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RESUMO
O problema de roteamento de estoques vem recebendo maior atenção nos últimos anos,

principalmente porque integra duas atividades essenciais que compõem a gestão da cadeia de supri-
mentos, a saber: controle de estoques e roteamento de veı́culos. Para resolver este problema, um
algoritmo metaheurı́stico baseado em busca local iterada é proposto. Além disso, duas funções
objetivo diferentes são abordadas. A primeira minimiza o custo total, o qual é composto de cus-
tos de estocagem e de viagem, enquanto a segunda minimiza uma razão logı́stica. Experimentos
computacionais mostram que a metaheurı́stica proposta pode fornecer soluções razoavelmente boas
em tempos computacionais relativamente curtos para ambas as funções objetivo quando aplicada a
instâncias da literatura. Para algumas dessas instâncias, foram encontradas soluções com valores
melhores que aqueles conhecidos até o momento na literatura.

PALAVRAS CHAVE. Problema de roteamento de estoques; Busca local iterada; Razão
logı́stica.

L&T – Logı́stica e Transportes; MH – Metaheurı́sticas

ABSTRACT
The inventory routing problem has received increased attention in recent years mainly

because it integrates two essential activities that compose the supply chain management, namely:
inventory control and vehicle routing. To solve this problem, we propose a metaheuristic algorithm
based on iterated local search. Also, we tackle two different objective functions. The first min-
imizes total cost, composed of inventory and traveling costs and the second minimizes a logistic
ratio. Computational experiments show that the proposed metaheuristic can provide reasonably
good solutions in relatively short running times for both objective functions when applied to prob-
lem instances from the literature. The solutions obtained for some instances improve upon previous
best-known solutions.

KEYWORDS. Inventory routing problem; Iterated local search; Logistic ratio.

L&T – Logistics and transportation; MH – Metaheuristics
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1. Introduction
Nowadays, companies have realized that optimizing the operations of the supply chain

can yield considerable gains. Therefore, many strategies have appeared aiming to integrate the
activities that compose the supply chain management. The Inventory Routing Problem (IRP) mod-
els situations in which suppliers are allowed to manage the inventory of their customers aiming to
reduce logistics costs and improve the overall performance of the supply chain [Archetti and Sper-
anza, 2016]. In return, suppliers must ensure that no stockout will occur at the customers. Hence,
the IRP consists of determining the best visit schedule, delivery quantities and vehicle routing plan
to meet the demands of the customers over the planning horizon.

In this paper, we address the basic variant of the IRP, i.e., the single-item, multi-vehicle
and multi-period IRP. We propose a metaheuristic algorithm based on Iterated Local Search (ILS) to
solve this variant considering two different types of objective function. Computational experiments
show that the metaheuristic can find good feasible solutions in reasonably short running times.

The IRP has been studied for more than 30 years [Coelho et al., 2014] since the paper of
Bell et al. [1983], who solved an integrated inventory and vehicle routing problem for the bulk gas
industry. Thenceforth, many IRP variants have been proposed and solved in the literature, such as,
long-term IRPs [Dror et al., 1985; Dror and Ball, 1987], IRPs minimizing transportation costs only
[Campbell and Savelsbergh, 2004], with pickup and delivery and routes spanning multiple time
periods [Savelsbergh and Song, 2007, 2008], with backlogging [Abdelmaguid et al., 2009], with
perishability constraints [Le et al., 2013], multi-product IRP [Cordeau et al., 2014], single product
IRP (basic variant) [Archetti et al., 2007; Solyalı and Süral, 2011; Shiguemoto and Armentano,
2010; Coelho et al., 2012; Archetti et al., 2012; Coelho and Laporte, 2013, 2014; Coelho et al.,
2014; Adulyasak et al., 2014b; Archetti et al., 2014; Santos et al., 2016; Desaulniers et al., 2016;
Alvarez et al., 2017], among other variants [Andersson et al., 2010; Coelho et al., 2014]. Observe
that the basic variant of the IRP addressed in this paper has received an increasing attention in the
last years.

The remainder of this paper is organized as follows. In Section 2, we describe the char-
acteristics of the addressed IRP. In Section 3, we present the solution method proposed to solve the
problem. The results of the computational experiments with the algorithm are described in Section
4 and the conclusion of this work is presented in Section 5.

2. Problem description
In the IRP the supplier is responsible for delivering the single product to the customers

and controlling their inventory levels, as well as its own inventory level. To define the problem,
consider the following sets and parameters:

0 : the supplier;
C = {1, . . . , N} : set of customers;
N = {0} ∪ C : set of facilities;
T = {1, . . . , T} : planning horizon;
K = {1, . . . ,K} : set of vehicles;
dit : consumption (demand) of customer i ∈ C in period t ∈ T ;
rt : production quantity in the supplier at period t ∈ T ;
Ii0 : initial inventory available at the start of the planning horizon in facility i ∈ N ;
hit : unit holding cost at facility i ∈ N at period t ∈ T ;
cij : transportation cost when a vehicle travels from i to j, ∀ i, j ∈ N ;
Ci : holding capacity of customer i ∈ C;
Q : capacity of the vehicles (homogeneous fleet);

The consumption (demand) of the product (dit) is the minimum amount of product that
the supplier must guarantee to be available at the customer i in time period t. A quantity larger
than dit may be delivered before or in period t and the surplus of product can be stocked to meet
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future demands. Each vehicle can perform a single route each time period and no delivery splitting
is allowed inside the period. All vehicle routes must originate from and end at the supplier.

The IRP consists of determining when to visit each customer, how much to deliver in each
visit and how to combine those deliveries into feasible routes in each time period. We address two
objective functions. The first minimizes the sum of the transportation costs and inventory holding
costs at the supplier and at the customers, i.e.,

min
∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

cijx
kt
ij +

∑
i∈N

∑
t∈T

hitIit,

where xktij is binary value that is equal to 1 if and only if vehicle k goes from i to j in time period
t; and Iit is the inventory level of i at time period t. The second objective function consists of
minimizing the logistic ratio, given by the total transportation costs divided by the total quantity
delivered through the planning horizon:

min

∑
i∈N

∑
j∈N

∑
k∈K

∑
t∈T

cijx
kt
ij∑

i∈C

∑
t∈T

qit
,

where qit is the total quantity delivered to customer i at time period t. Holding costs are not included
in this objective. For mathematical formulations of the IRP see Coelho and Laporte [2014].

3. Solution method
In this section, we introduce the metaheuristic algorithm proposed to solve the IRP. First,

we detail a construction heuristic used as source of good feasible solutions and then we present the
ILS algorithm and their components.

3.1. Construction heuristic
A construction heuristic was proposed to provide initial solutions for the metaheuristic.

In each iteration, the heuristic separates the decisions of the problem into two phases. In the first
phase, the heuristic defines which customers to visit and how much to deliver to them. Then, in the
second phase feasible delivery routes are defined to visit the customers selected in the first phase.

The heuristic is based on the inventory levels Iit of each customer i ∈ C at each time
period t ∈ T . Inventory levels are first computed at the beginning of the heuristic, for all i ∈ C
and t ∈ T . Then, they are updated at the end of each iteration based on the deliveries of the routes
obtained in the iteration.

There is one iteration of the heuristic for each time period t, starting from t = 1. In the
first phase of iteration t, to determine the customers that will be visited and the quantities that will
be delivered to them, the heuristic separates the customers into two sets. The first set is composed
by those customers for which stockout will occur if they are not visited in the current period. The
remaining customers are selected to enter in the second set based on the degree of urgency of the
customer (if a stockout may occur in the following time periods) and the potential profitability of
the visit. Then, in the second phase of the iteration a standard nearest-neighbor insertion heuristic
is used to determine feasible routes for the customers of these sets. The resulting routes are used
to update the inventory levels at the end of the current time period. If the updated level Iit of at
least one customer in the first set remains negative, then the heuristic terminates with no solution.
Otherwise, a new iteration is started for the next time period (t+1), until the end of the time horizon.

3.2. Iterated local search
ILS is a metaheuristic that applies a local search algorithm to solutions resulting from the

perturbation of the previously visited search point, leading to a randomized walk on the space of
local optimal solutions [Lourenço et al., 2003; Stützle, 2006; Alvarez and Munari, 2016]. A basic

1484



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

ILS algorithm is composed by a construction heuristic, a local search procedure and a perturbation
mechanism.

We propose an ILS algorithm that uses the construction heuristic of Section 3.1 as source
of initial solutions, a multi-start randomized variable neighborhood descent (RVND) heuristic to
perform the local search and a multi-operator algorithm as perturbation mechanism. Finally, as
acceptance criterion the heuristic keeps the reached solution only if its objective value is better than
the current best solution. A pseudo-code of the proposed ILS is shown in Algorithm 1.

Algorithm 1: Iterated local search
input : Instance, parameters;
output: Best solution S∗;

1 begin
2 S0 ← Construct initial solution;
3 if S0 6= ∅ then
4 S∗ ← multi-RV ND(S0);
5 while stop criterion is not met do
6 S

′ ← perturb(S∗);
7 S

′ ← multi-RV ND(S
′
);

8 if f(S
′
) < f(S∗) then S∗ ← S

′
;

9 end
10 end
11 end

For the local search procedure, a variable neighborhood descent heuristic [Mladenovic
and Hansen, 1997] with random neighborhood ordering is used. This heuristic explores different
neighborhoods of the current incumbent solution by applying a set of local search operators. In our
implementation, all operators exhaustively explore the search space using the best improvement
strategy and only allowing feasible solutions through the search process.

Seven local search operators are used by the heuristic. The first three are routing operators
and the others are inventory-routing operators, as follows: Or-opt(k), k ∈ {1, 2, 3}; Shift(k), k ∈
{1, 2, 3}; Swap(k1, k2), k1, k2 ∈ {1, 2}, k1 ≥ k2; Increase/reduce deliveries; Merge visits; Transfer
visits and Insert visits.

Since RVND is a non-deterministic algorithm (local optimal solutions can be different for
distinct local search operators and random ordering of the operators), we used a multi-start RVND
heuristic to boost the intensification of the local search and reduce the variability of the results. The
number of times the algorithm repeats the process is controlled by the parameter maxIterRVND.
We set to 5 its value which, according to prior tests, provides an adequate balance between solution
quality and computational effort.

Perturbation must be applied to escape from local optimal solutions. The performance of
the ILS is strongly dependent on strength of the perturbation applied because it defines much of the
behavior of the metaheuristic. Thus, given the multiple decisions made simultaneously on the IRP, a
perturbation mechanism composed by four (distinct) operators is used in the ILS. The operators are:
Random shift of visits; Random delivery reductions; Random insertion of visits; and Random split of
deliveries. Each call to the perturbation algorithm activates a single operator chosen at random until
one of them changes at least one element of the solution. A maximum of max perturb elements
of the solution can be perturbed. The value of this parameter was calibrated using the ParamILS
algorithm of Hutter et al. [2009], which determined that the most suitable value for this parameter
was 7. This configuration was adopted in all the subsequent experiments.

Finally, it is worth mentioning that Santos et al. [2016] also proposed an ILS-based hybrid
method for the IRP, with similar local search and perturbation algorithms. Different to their ap-
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proach, our ILS metaheuristic applies the local search heuristic in a multi-start approach to explore
more intensively and effectively the search space and no mathematical programming component is
used in our method.

4. Computational experiments
This section describes the computational experiments carried out to evaluate the perfor-

mance of the proposed ILS to solve the IRP. The algorithm was coded using C++ language and run
on an Intel Core i7-2600 3.4 GHz processor and 16 GB of RAM.

The metaheuristic was tested on the benchmark instances proposed by Archetti et al.
[2007] for the single-vehicle IRP. This set is composed of 160 instances involving from 5 to 50
customers and grouped into four sets: H3, L3, H6 and L6. H (L) means that the inventory holding
costs in the instances are high (low) in comparison with the travel costs, while the number 3/6 indi-
cates the number of time periods in the instances of the set. The travel costs correspond to Euclidean
distances rounded to the nearest integer. We use two to five vehicles in addition to the single-vehicle
case, resulting in 800 instances. The original vehicle capacity is divided by the number of available
vehicles and then rounded to the nearest integer when the objective function is the total cost and,
following Archetti et al. [2016], rounded to the nearest lower integer when the logistic ratio is used
as an objective function.

In the first computational experiment, we analyze the performance of the proposed meta-
heuristic algorithm according to different running time limits when minimizing the total cost. As
the metaheuristic has random components, each instance was run five times for a time limit of 5
and 30 seconds. It is worth mentioning that longer running times were tested, but no significant
gains were achieved compared to the additional computational effort. Table 1 summarizes the best
out of five results within 5 and 30 seconds. The first three columns in the table give the name of
the instance set, the number of available vehicles and the total number of instances in the group,
respectively. We grouped the instances of each set according to the number of vehicles, so that each
row in the table represents the average over all instances in the corresponding group (same set and
same number of vehicles). For both time limits, the table shows the value of the objective function
of the solutions (total cost); the time required to find the best solution (time to best); the optimality
gap (opt gap), measured as the relative difference to the lower bounds (LB) reported by the BPC
algorithm of Desaulniers et al. [2016] and the B&C of Coelho and Laporte [2014]; and the relative
difference between the results obtained by the method and the best upper bounds (UB) reported in
the literature (best UB gap). We took the best UBs provided by the Adaptive Large Neighborhood
Search (ALNS)-based hybrid method of Adulyasak et al. [2014b], the B&C of Adulyasak et al.
[2014a] and the previously mentioned exact methods. The average of each column is shown in the
last row of the tables (avg).

The results of the experiment show that for both time limits the metaheuristic can find
good feasible solutions, with and approximated average optimality gap of 2%. Notice that the time
to find the best solution is very short when compared to the time limit and, as expected, it tends
to increase with the number of vehicles and periods. The average optimality gaps of the solutions
also tend to increase with the number of vehicles and periods. However, as many LBs may not
correspond to optimal solutions this conclusion must be taken cautiously. Negative average gaps to
the best UBs indicate that, on average, the solutions found are better than the best solutions reported
in the literature. Specifically, 66 new best known solutions were found. Finally, it can be observed
that the optimality gaps are quite low considering the relatively short running times.

Regarding the characteristics of the instances, notice that when the number of vehicles
increases for the same instance set, the average total cost also increases as a result of larger total
travel costs. The average time to find the best solution of the algorithms also increases with the
number of vehicles as a consequence of the enlargement of the search space.

To further analyze the performance of the metaheuristic regarding different characteristics
of the instances, Table 2 shows the detailed results (considering the average of the five executions for

1486



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Set nV # of
instances

5 seconds 30 seconds
total time opt best UB total time opt best UB
cost to best gapa gapb cost to best gapa gapb

H3

1 50 9279.03 0.40 0.43% 0.43% 9280.45 2.07 0.37% 0.37%
2 50 9625.80 0.84 0.54% 0.54% 9612.83 5.35 0.33% 0.33%
3 50 10081.15 1.01 0.66% 0.59% 10060.74 5.17 0.47% 0.40%
4 50 10569.55 1.44 0.90% 0.54% 10538.93 7.15 0.67% 0.32%
5 50 11012.82 1.76 1.10% 0.03% 10993.96 7.27 0.97% -0.10%

L3

1 50 3026.58 0.67 1.62% 1.62% 3019.71 3.11 1.41% 1.41%
2 50 3420.15 1.06 3.20% 3.18% 3393.57 6.57 2.32% 2.31%
3 50 3865.27 1.25 3.14% 2.80% 3850.93 5.62 2.82% 2.48%
4 50 4315.54 1.54 2.51% 1.35% 4302.44 6.43 2.24% 1.10%
5 50 4767.22 1.51 3.33% 0.63% 4734.09 8.52 2.69% 0.03%

H6

1 30 13001.29 2.15 0.71% 0.71% 12999.55 11.21 0.72% 0.72%
2 30 14071.98 2.90 1.72% 1.65% 14005.35 15.23 1.24% 1.17%
3 30 15299.94 3.07 2.34% 1.67% 15256.78 17.02 2.18% 1.51%
4 30 16617.15 3.35 2.99% -0.07% 16539.82 14.06 2.50% -0.55%
5 29 18326.07 3.17 3.71% -0.53% 18219.63 18.22 3.19% -1.02%

L6

1 30 5902.19 2.33 1.91% 1.91% 5898.11 6.71 1.72% 1.72%
2 30 6915.65 3.01 3.12% 2.88% 6856.92 15.24 2.32% 2.07%
3 30 8189.08 2.84 4.65% 3.14% 8112.11 15.14 3.79% 2.30%
4 30 9476.69 2.98 5.09% 0.53% 9400.22 17.99 4.32% -0.19%
5 29 11003.49 2.89 6.23% -3.18% 10936.91 13.68 5.66% -3.70%

avg 9438.33 2.01 2.50% 1.02% 9400.65 10.09 2.10% 0.63%
a Best LB from: Desaulniers et al. [2016] (BPC) and Coelho and Laporte [2014] (B&C).
b Best UB from: Desaulniers et al. [2016] (BPC), Coelho and Laporte [2014] (B&C) and Adulyasak et al. [2014a] (B&C & ALNS).

Table 1: Best results of the metaheuristic.

the 30 seconds time limit) for the instance sets H3 and L6 with one and five vehicles, respectively.
These instances represent extreme features of all tested instances, namely the easiest (L3, with only
one vehicle) and most difficult (H6, with 5 vehicles). It is worth highlighting that all solutions for
the instances with one single vehicle were solved to optimality by exact methods [Desaulniers et al.,
2016; Coelho and Laporte, 2014]. The results are grouped according to the number of customers
(nC). Notice that the average time required to find the obtained solutions (time to best) and the
optimality gaps (opt gap) increase with the number of customers in the instance. Finally, observe
the negative average gap to the best UBs for the larger instances (H6 with 25 and 30 customers).

Set nV nC # of
instances

total time opt best UB
cost to best gap gap

H3 1

5-10 10 3280.14 0.01 0.38% 0.38%
15-20 10 6339.82 0.94 0.13% 0.13%
25-30 10 10005.15 3.40 0.53% 0.53%
35-40 10 12091.18 2.75 0.95% 0.95%
45-50 10 14802.14 6.55 1.14% 1.14%

L6 5
5-10 9 8944.13 7.52 5.12% 4.10%

15-20 10 11225.25 16.94 7.63% 2.86%
25-30 10 12930.16 19.75 8.76% -13.10%

Table 2: Detailed results for the some set of instances.

We compared the results of our metaheuristic against the ALNS-based hybrid method of
Adulyasak et al. [2014b], as this is the only heuristic method whose results are publicly available.
Table 3 reports the average relative differences between the results found by the ILS (best out of
five runs within 30 seconds) and the results of Adulyasak et al. [2014b]. The results are grouped
according to the number of customers (nC). It can be observed that the metaheuristic outperforms
the ALNS-based hybrid method on average, as only negative relative differences are presented for
the instance sets. Unfilled cells (–) are due to incomplete report of the results of the ALNS-based
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hybrid method.

Set nC 2 veh 3 veh 4 veh
H3 5-50 -1.88% -3.29% -3.00%
L3 5-50 -1.75% -3.99% -6.83%
H6 5-25 -1.57% -0.66% –
L6 5-25 -3.03% -1.79% –
avg -2.06% -2.43% -4.91%

Table 3: Relative differences to the ALNS of Adulyasak et al. [2014b].

Regarding the performance of the metaheuristic when addressing the IRP with logistic
ratio as objective function, Table 4 shows the relative gaps of the best (out of five) results found by
ILS within 30 seconds with respect to the optimal logistic ratios reported by Archetti et al. [2016].
In that paper, the authors solved the instance set H3 (three time periods and high inventory holding
cost) and extended the instances of this set to four and five time periods, resulting in sets H4 and
H5, respectively. The instance are grouped based on the number of vehicles (nV) and the number
of customers (nC), given in the first two columns. For each instance set (H3, H4 and H5), column
lr* gives the average of the optimal logistic ratios over all instances in the group and column ILS
gives the average relative difference of the logistic ratios obtained by ILS in relation to lr*. The
results show that the metaheuristic is able to find optimal or near optimal solutions for most of the
analyzed instances, demonstrating the ability of the developed algorithm to also address the logistic
ratio as the objective function in the IRP. For the instances solved in the sets H3, H4 and H5, ILS
found solutions with average logistic ratio of 2.77, 3.39 and 3.41, respectively. Unfilled cells (–)
are due to that Archetti et al. [2016] could not find the optimal solutions for those instances.

nV nC H3 H4 H5
lr* ILS lr* ILS lr* ILS

1
5 2.54 0.79% 2.66 1.13% 2.59 10.42%

10 1.42 0.00% 1.43 0.70% 1.42 0.70%
15 1.15 0.87% – – – –

2
5 3.18 1.57% 3.28 0.91% 3.19 2.19%

10 1.86 2.15% 1.87 0.53% 1.86 1.61%
15 1.41 2.13% – – – –

3
5 4.19 0.00% 4.15 2.41% 4.26 2.11%

10 2.35 0.85% 2.27 2.20% 2.34 3.85%
15 1.68 0.60% – – – –

4
5 5.06 1.38% 5.34 1.69% 5.31 3.01%

10 2.80 0.00% 2.78 2.16% 2.81 2.49%
15 1.97 2.54% – – – –

5
5 6.02 1.00% 6.38 1.41% 6.10 2.13%

10 3.26 1.23% 3.27 1.22% 3.29 1.52%
15 2.29 1.31% – – – –

avg 2.75 1.09% 3.34 1.44% 3.32 3.01%

Table 4: Comparison to the optimal logistic ratios.

5. Conclusions
In this paper, we presented a metaheuristic algorithm based on Iterated Local Search (ILS)

to solve the inventory routing problem. A construction heuristic and a multi-start randomized vari-
able neighborhood descent heuristic are used in the algorithm. Two different objective functions
were addressed, namely, total cost minimization and logistic ratio minimization. All the experi-
ments were based on over 800 instances from the literature. The results showed that the proposed
algorithm can effectively handle both objective functions and provide good feasible solutions in
short running times. New best known solutions were found for 66 instances when using the first
objective function.
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An interesting perspective for future research is to extend the metaheuristic approach to
deal with richer IRP variants, such as IRP with time windows and/or with heterogeneous fleet. Other
interesting lines of research are to combine this metaheuristic with mathematical programming
components yielding effective hybrid methods.
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