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RESUMO
Num artigo pioneiro publicado em 1960, Barlow e Hunter consideram um sistema re-

parável operando sob reparo mı́nimo e acham a polı́tica de manutenção determinı́stica ótima que
minimiza o custo esperado por unidade de tempo. Neste trabalho propõe-se uma polı́tica aleatória
que realiza manutenção cada vez que a intensidade de falha atinge o custo observado por unidade
de tempo. Para um sistema que está deteriorando no tempo, mostra-se que a polı́tica aleatória tem
menor custo esperado que a de Barlow e Hunter para um modelo de reparo geral. No caso particular
de reparo mı́nimo e assumindo um Processo de Lei de Potência, determina-se a distribuição exata
do tempo até a manutenção e o custo esperado associado com a polı́tica aleatória. Essa distribuição
esta relacionada com a Distribuição de Poisson Generalizada.
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ABSTRACT
In a seminal paper published in 1960, Barlow and Hunter considered a repairable system

subject to minimal repairs and found the deterministic optimal maintenance policy which minimizes
the expected cost per unit of time. Here it is proposed a random policy which maintains the system
whenever the failure intensity exceeds the observed cost per unit of time. When the system is
deteriorating over time, it is shown that this random policy has lower expected cost than the periodic
one for a general repair model. Moreover, under the minimal repair assumption and assuming a
Power Law Process intensity, the exact distribution of the random time and associated cost is shown
to be related to the generalized Poisson distribution.
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1. Introduction
We consider a repairable equipment that is subject to failures at random times. Often, it

is assumed that such equipment may undergo two types of actions during operation. On one hand,
after each failure, the equipment is repaired in order to continue functioning. On the other, at times
determined by the operator, it is preventively maintained in order to avoid too frequent failures.
Operation of these systems should consider the costs of preventive maintenance and of each failure,
including here both the cost of the repair action and those due to the system coming unexpectedly
to a halt. A maintenance policy determines the times at which preventive maintenance should be
performed. Designing sound maintenance policies is a main concern in many economic activities.

In the past, much of the engineering literature has focused on models that assume minimal
repair (MR) and perfect maintenance (PM), also known as as bad as old (ABAO) and as good as
new (AGAN) respectively. Systems subject exclusively to MR actions are modeled as a nonhomo-
genous Poisson process (NHPP), often with a power law intensity λ(t) = (β/η) (t/η)β−1. More
recently, attention has been given to imperfect repair (IR) models, where the effect of each repair
leaves the system between the as bad as old and as goos as new conditions. For instance, Kijima
et al. [1988] considered g-renewal processes whereby the process begins as an NHPP with a refe-
rence intensity λR(t) but, the effect of each repair after a failure is to reduce the age of the system
by a factor of θ, so that the actual intensity of failure at a given moment t is

λ(t) = λR[θ tN(t) + t− tN(t)] = λR[tN(t) − (1− θ) tN(t)] , (1)

where tN(t) is the last failure before t. Here, t is the chronological age while V (t) = θ tN(t) +
t − tN(t) = tN(t) − (1 − θ) tN(t) is called the virtual age of the system. When θ = 1 we have
MR because V (t) = t and the process is an NHPP with intensity λR(t). On the other hand, θ = 0
corresponds to perfect repair because in this case V (t) = t − tN(t) and the process renews after
each failure. Hence, θ is called the efficiency of repair and measures the amount of rejuvenation
introduced by the repair action following a failure. Model (1) is usually called the Kijima virtual
age or, following Doyen and Gaudoin [2004], the Arithmetic Reduction of Age of order 1 (ARA1)
model. Alternatively, Lam [1988] introduced the so called geometric processes, where the times
between successive failures take the form Xn = Yn/a

n−1, the Yns being iid random variables and
a a constant that measures the efficiency of the repair actions. While the last word about Imperfect
Repair (IR) models has not been written yet, what we are interested here is that, from a mathematical
point of view, IR leads to counting processes (CPs) with a stochastic intensity λ(t) such as (1).

Barlow and Hunter [1960] discussed optimal periodic policies for equipments subject to
MR and PM which can be extended in a straightforward manner for the IR case [cf. Kijima et al.,
1988; Toledo et al., 2016]. Briefly, suppose that the number of failures N(t) between 0 and t is
a counting process (CP) with (possibly random) intensity λ(t), and define the unconditional mean
function Φ(t) = EN(t) =

∫ t
0 Eλ(u) du. The rate of occurrence of failures (ROCOF) function

is φ(t) = Φ′(t) = Eλ(t). It is, essentially, an unconditional version of the intensity λ(t). For
the MR/NHPP case, the intensity is deterministic and hence Φ(t) =

∫ t
0 λ(u) du and φ(t) = λ(t).

The costs associated to the maintenance and repair actions are assumed to be random variables
independent of the failure history of the system and having finite expected values CM = k and
CR = 1 (the assumption CR = 1 means that we take the monetary unit to be CR and carries no
loss of generality). Barlow and Hunter’s policy is obtained minimizing the expected cost per unit
of time C(t) = [k + N(t)]/t. Since EC(t) = [k + Φ(t)]/t, defining B(t) = t φ(t) − Φ(t) and
differentiating one obtains that the optimal periodicity τBH must satisfy

τBH φ(τBH)− Φ(τBH) = k . (2)

We have assumed here that the ROCOF φ(t) is nondecreasing and, for τBH to be finite, that
limt→∞B(t) > k. Note that, if φ(t) is nondecreasing, so should be B(t) because B′(t) = t φ′(t).
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The periodic policy τBH introduced above do not take into account the failure history of
the system. However, at least for IR models, the failure history carries a great amount of information
about the intensity and, hence, also about the reliability of the system. Therefore, the objective of
this paper is to question whether the periodic policy can be improved by taking into account the
failure history of the system.

The main idea is quite simple. Suppose as before thatN(t) is a CP adapted to the filtration
Ft with intensity λ(t). Since for small h we have that E[N(t+h)−N(t) |Ft] ≈ hλ(t), it follows
that

E[C(t+ h)− C(t) |Ft] = E
[
k +N(t+ h)

t+ h
− k +N(t)

t
|Ft

]
= − h

t+ h

k +N(t)

t
+

1

t+ h
E[N(t+ h)−N(t) |Ft] ≈

h

t+ h
[λ(t)− C(t)].

Therefore, we expect the cost per unit of time to increase when λ(t) > C(t) and to decrease
otherwise. This suggests monitoring the intensity λ(t) and the cost per unit of time C(t) =
[k + N(t)]/t and performing a PM as soon as the former reaches the latter. More precisely, the
maintenance policy is defined by the stopping time

τ = inf{t > 0 : λ(t) ≥ C(t)} (3)

(see Figure 1).
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Figura 1: Determination of τ for k = 10 and one simulation of (a) an NHPP with intensity λ(t) = (2.5) t1.5

and (b) an ARA1 model with λR(t) = (2.5) t1.5 and θ = 0.5.

Before comparing the two policies τBH and τ , we should discuss the meaning of a deteri-
orating system for IR models. For MR, the process is an NHPP with a deterministic intensity and it
is clear that deteriorating means that the intensity is nondecreasing. However, for IR, the intensity is
subject to random fluctuations and hence the concept is not straightforward. Gilardoni et al. [2016]
argue that the appropriate definition, which they call continuous wear-out (CWO), should require
that the ”conditional ROCOF”maps t 7→ E[λ(t) |Fs] (t > s) be nondecreasing with probability
one for all s. They further show that this is equivalent to the requirement that the intensity process
λ(t) is a submartingale.

Under this perspective, the main results of this paper are the following:

Theorem 1. Let N(t) be a right-continuous counting process with respect to the filtration Ft and
assume that the intensity λ(t) is a submartingale and limt→∞B(t) > k. Then, for τBH and τ
defined respectively in (2) and (3), we have that EC(τBH) ≥ EC(τ).

Theorem 2. LetN(t) be an NHPP with intensity λ(t) = β tβ−1/ηβ with β > 1 and define µ = β−1

and an = η [(k + n)/β]1/β . Then, for n ≥ 0,

P [τ = an] = P [N(τ) = n] = e−kµ k
(n+ k)n−1

n!
µn e−nµ . (4)
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Theorem 1 states that, for any failure process satisfying the CWO property, the random
policy τ outperforms the periodic one τBH . To our surprise, this holds even for the MR/NHPP case.
Next, note that in the MR/NHPP case, since τ λ(τ) = N(τ)+k, the distribution of τ [hence also that
of C(τ)] is discrete (cf. Figure 2). Theorem 2 gives an explicit expression for that distribution in the
Power Law Process (PLP) case. We note that the distribution (4) is usually known as Generalized
Poisson Distribution with parameters α = kµ and λ = µ and has appeared in several other areas
[cf. Consul, 1989].
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Figura 2: Admissible values of τ (an) and C(τ) (cn) in the MR/NHPP case. Dashed curves are the maps
t 7→ (k + n)/t (n = 0, 1, . . .). Superimposed there is a trajectory of the cost for which τ = a2, i.e., the
number of failures before maintenance is N(τ) = 2.

The rest of the paper is organized as follows. The next Section contains the proof of
Theorem 1. The proof of Theorem 2 is based on optional stopping of Wald’s exponential martingale
Sb(t) = exp{bN(t) − (eb − 1)Λ(t)} and a connection with Lambert’s W function [cf. Corless
et al., 1996] which allows us to find the probability generating function of N(τ). However, since
the martingale Sb(t) is not uniformly integrable, the proof becomes somewhat technical and, for
reason of space, is not presented here. Notwithstanding, in Section 3 we use the result to compare
both Eτ with τBH and EC(τ) with EC(τBH) for several combinations of k and β.
2. Notation and main result

We refer to books such as Kannan [1979] for fundamental results about CPs, stopping
times and optional stopping. In what follows all integrals are to be taken in the Stieltjes sense, more
precisely

∫ b
a f(u) du =

∫
(a,b] f(u) du. We will assume that all processes and filtrations are right

continuous and properties such as stopping times and predictability are with respect to the filtration
{Ft : t ≥ 0}. Whenever possible we will omit dependence on elements of the sample space
Ω, so that we will write for instance X(t) instead of X(t)(ω) and, if σ is a stopping time, X(σ)
instead X(σ(ω))(ω). With respect to the counting process N(t), we will assume that it admits a
Doob-Meyer decomposition of the form

N(t) = Λ(t) +M(t) =

∫ t

0
λ(u) du+M(t) (5)

such that (i) the intensity λ(t) is a non negative predictable process such that the maps t 7→ λ(t) are
piecewise continuous and locally bounded and (ii) the martingale M(t) is such that M(0) = 0 and
the maps t 7→M(t) have bounded variation and are uniformly integrable.

Lemma 1. Assume that N(t) is a CP as before and that the intensity process λ(t) is a submartin-
gale. Then the process A(t) = t[λ(t)− C(t)] = tλ(t)− k −N(t) is a submartingale with respect
to the filtration Ft.

Demonstração. Note thatA(t) =
∫ t
0 u dλ(u)−k−M(t). Now, since g(u) = u is non negative and

predictable, the process
∫ t
0 u dλ(u) is a submartingale. This and the fact that M(t) is a martingale

completes the proof.
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Lemma 2. Assume that N(t) is a CP with a submartingale intensity λ(t). Then, for any two
stopping times δ ≤ σ which are bounded away from zero, in the sense that there exists an a > 0
such that P(σ ≥ δ ≥ a) = 1, we have that

E[C(σ)− C(δ)] = E
(∫ σ

δ

A(u)

u2
du

)
. (6)

Demonstração. Since the map t 7→ t−1 is continuous for t ≥ a, using integration by parts for
càdlàg processes we have that

C(σ)− C(δ) =
k +N(σ)

σ
− k +N(δ)

δ
=

∫ σ

δ

1

u
dN(u)−

∫ σ

δ

k +N(u)

u2
du

=

∫ σ

δ

λ(u)

u
du+

∫ σ

δ

1

u
dM(u)−

∫ σ

δ

C(u)

u
du =

∫ σ

δ

A(u)

u2
du+

∫ σ

δ

1

u
dM(u) .

Since Ya(t) =
∫ t
a u
−1 dM(u) (t ≥ a) is a UI martingale, it follows from the OST that E

∫ σ
δ u
−1 dM(u) =

E[Ya(σ)− Ya(δ)] = 0.

Note that we can write (3) as τ = inf{t > 0 : A(t) ≥ 0}. Therefore, A(u) < 0 whenever
u < τ and, using the right-continuity of A(t), A(τ) ≥ 0 (see Figure 1). Using this fact we can
prove now Theorem 1.
Proof of Theorem 1. It follows from (6) that

E[C(τBH)− C(τ)] = −E
(∫ τ

τBH∧τ

A(u)

u2
du

)
+ E

(∫ τBH∨τ

τ

A(u)

u2
du

)
.

The first term is nonnegative because A(u) < 0 for u < τ . For the second term, note that (i)
1{τBH>τ} is Fτ -measurable and (ii) it follows from Lemma 1 that E[A(u) |Fτ ] ≥ A(τ) ≥ 0 on
the event {u ≥ τ}. Therefore,

E
(∫ τBH∨τ

τ

A(u)

u2
du |Fτ

)
= 1{τBH>τ} ·

∫ τBH

τ

E[A(u) |Fτ ]

u2
du ≥ 0 .

Now the tower property of conditional expectations complete the proof.

3. Distribution of τ and C(τ ) in the PLP case
As mentioned before, for reason of space we omit here the proof of Theorem 1. We finish

this section comparing E τ and EC(τ) with τBH and EC(τBH) in the PLP case with β > 1.
Consider first the deterministic optimal periodicity τBH = B−1(k). Since for the PLP we have that
B(t) = t λ(t)−Λ(t) = β (t/η)β , simple algebra shows that τBH = η[k/(β−1)]1/β , EC(τBH) =
λ(τBH) = β η−1 [k/(β − 1)]1−1/β and EN(τBH) = Λ(τBH) = k/(β − 1). To compare with
corresponding results for τ , we note that computing moments of N(τ) is not difficult using for
instance well known properties of power series distributions. Indeed, EN(τ) = k µ (1 − µ)−1 =
k/(β − 1) and VarN(τ) = k µ (1 − µ)−3 = k β2/(β − 1)3. The fact that EN(τ) = EN(τBH)
seems remarkable.

On the other hand, while we have not been able to find explicit expressions for either E τ
or EC(τ), since both an and cn have polinomial grow while pn = P (τ = an) = P [C(τ) = cn]
decays geometrically, given values of η, β and k, it is easy to compute the series E τ =

∑∞
n=0 an pn

and EC(τ) =
∑∞

n=0 cn pn to any desired precision. We omit the details here, but show in Figure 3
the behavior of E τ and EC(τ) for different values of the shape parameter β and the ratio of costs
k and compare them with the corresponding expressions for the optimal deterministic time τBH .
Acknowledgements. We thank CNPq and FAPDF for financial support.
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Figura 3: Comparison of E τ with τBH and of EC(τ) with EC(τBH). Plots (a) and (b) are for a PLP
process with η = 1 and ratio of costs k = 1, against the shape parameter β. Plots (c) and (d) are for a PLP
process with η = 1 and shape parameter β = 1.5, against the ratio of costs k.
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