
XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

MODELING MAINTENANCE SERVICE CONTRACTS USING 
DISCRETE EVENT SIMULATION 

 
João Mateus Marques de Santana 

joaomateusmsantana@gmail.com 
 

Bruno Nunes Guedes 
brunonunes1@gmail.com 

 
Márcio José das Chagas Moura 

marcio@ceerma.org 
 

Isis Didier Lins 
isis.lins@gmail.com 

 
Enrique López Droguett 

ealopez@ceerma.com 
 

Helder Diniz 
helderhld@gmail.com 

 
Centro de Estudos e Ensaios em Risco e Modelagem Ambiental (CEERMA) – Universidade 

Federal de Pernambuco (UFPE) 
Rua Acadêmico Hélio Ramos, s/n, Cidade Universitária, Recife, Brasil 

 
ABSTRACT 

This paper presents a model and a simulation solution approach for the problem of the 
interaction between the original equipment manufacturer (OEM), which sells a device and offers 
repair services, and the buyers of the device, who can also choose to hire a product warranty (PW). 
This model allows for equipment degradation to be considered and assumes minimal repairs; times 
until failures are conditioned to equipment age. We also present an application example and 
sensitivity analysis on several of the model’s parameters. 
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1. Introduction 
 

For many companies, success highly depends on operational efficiency and, 
consequently, adequate maintenance performance. In order to achieve such performance, 
maintenance outsourcing has been a growing practice [Murthy et al. 2015], [Guedes et al. 2015]. 
The decision to outsource may be result of several characteristics, as stated by [Jackson and Pascual 
2008] and [Murthy and Jack 2014]: reduce costs, improve service, obtain expert skills, improve 
processes and improve focus on core activities. For many companies, equipment maintenance has 
become the main profit source [Guajardo et al. 2012]. 

In many scenarios, the Original Equipment Manufacturer (OEM) provides repair service 
for their products, frequently offering a Product Warranty (PW) or repair services on demand. This 
paper presents a simulation approach for the interaction between the OEM and its customers, 
concerning the purchase of a piece of equipment and possible acquisition of a PW. The model 
proposed here extends the model presented by [Ashgarizadeh and Murthy 2000], in which the 
service provider (in this paper considered to be the OEM) and the customers interact in a 
Stackelberg game. Discrete event simulation allows us to overcome some limitations of the 
analytical methodology developed in [Ashgarizadeh and Murthy 2000], as well as consider a 
broader range of scenarios and equipment reliability characteristics. This is also an extension on 
the model presented in [Santana et al. 2016], in which a similar problem case was approached with 
use of simulation. 

In the problem considered in this paper, the OEM must decide how many devices to sell, 
and also must set the prices charged for equipment warranty and repairs. Customers analyze the 
prices charged by the OEM and then decide whether to purchase the equipment, and whether to 
hire the warranty. The OEM is considered risk-neutral, while customers are risk-averse; we assume 
complete and perfect information, i.e., OEM and customers are completely aware of the equipment 
reliability behavior, as well as each other’s behaviors. Under these assumptions, this problem can 
be modeled as a Stackelberg game. 

Further description for the model is given in section 2; section 3 presents the model 
solution; section 4 presents an application with sensitivity analysis; and section 5 has some 
concluding remarks and suggestions for further extension of this work. 
 
2. Model description 
 
2.1. Notation 

 
The following notation will be used in this paper: 
 
- Ap: customer strategy p; 
- A*: customer optimal strategy; 
- Cb: price of equipment; 
- Cr: cost of a repair to the OEM; 
- Cs: price of single repair service; 
- Cs

*(M): optimal Cs given M; 
- k: the Weibull distribution shape parameter; 
- L: length of product warranty; 
- Lop: total operational time during L; 
- Lov: total overtime during L; 
- M: number of units sold and serviced by the manufacturer; 
- Mm: maximum allowed M; 
- Pw: price to hire product warranty; 
- Pw

*(M): optimal Pw given M; 
- R: revenue per operational unit time of an equipment; 
- t0: equipment age in the age-conditioned Weibull distribution; 
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- U(w): customer’s utility associated with wealth w; 
- y: time between the failure of a unit and its repair; 
- α: penalty per unit time when y exceeds τ; 
- β: customer’s risk aversion parameter; 
- µ: repair rate for each equipment; 
- π: OEM’s expected profit; 
- q: the Weibull distribution scale parameter; 
- τ: time limit for the OEM to repair a failed unit since its failure. 
 

2.2. Equipment failures and repairs 
 

The manufacturer (OEM) sells a total of M units and provides repair service for all of 
them. Each customer decides whether to purchase a device for a price of Cb and decides whether 
to hire a PW with a duration of L from the OEM by making a payment of a price Pw. If the customer 
does not hire the PW, the OEM still repairs the equipment for a price of Cs each time it fails. 

When operational, each equipment unit generates revenue of R per unit time and is subject 
to failures. When there is one or more units at failed state, they are repaired by the OEM, one at a 
time, at constant average rate µ. Repairs are considered to be minimal, so they do not restore 
degradation of equipment, i.e., when a equipment is repaired, it returns to operational state with 
the same age as before the failure; the next time until failure is conditioned to this age. Times until 
failures follow a Weibull distribution conditioned to the age of the equipment, as shown in Eq. (1). 
x is the time until the failure; t0 is the age of the device; q is the Weibull scale parameter; k is the 
Weibull shape parameter. 
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 (1) 

 
When covered by the PW, the OEM has a time limit of τ to return the equipment to 

operational state; if the time y between the failure of a unit under PW until the completion of its 
respective repair is longer than τ, the customer receives compensation from the OEM of a value 
α(y-τ), where α is the penalty rate parameter. 

A G/M/1 queue with finite population of size M (total number of equipment/customers 
served) is adequate to describe the behavior of failures and repairs as described above [Gross et al. 
2008], [Kleinrock 1975]. 

 
2.3. Customer’s decision problem 

 
Customers must decide whether to purchase the device. If they choose to purchase, it is 

also necessary to decide if a PW will be hired. These decision options are listed below: 
- A0: customers do not purchase the equipment; 
- A1: customers purchase the equipment and hire a PW; 
- A2: customers purchase the equipment but do not hire a PW. 
Customers are risk-averse and choose the option that maximizes their expected utility 

[Varian 1992]. All customers are considered homogeneous with respect to their risk behavior. Their 
utility associated with a wealth w is given by Eq. (2), where β is the risk aversion parameter. 

  

𝑈 𝑤 =
1 − 𝑒,9:

𝛽
 (2) 

 
In this model, we assume perfect information for the players, i.e., the OEM and the 

customers can estimate their expected returns. Considering the customers, they can estimate their 
expected utility from the choice for each of the strategies when given the prices of the PW (Pw) and 
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repairs on demand (Cs), as well as the number of equipment units to be sold (M). If customers 
choose A0 and do not purchase the equipment, their expected utility equals zero, since no gain or 
loss of wealth is observed. 

When the decision is for option A1, each customer purchases an equipment with price Cb 
and hires PW with price Pw. No further payment from the customer is needed when failures occur. 
The equipment does not generate revenue when in failed state. If the unit is not returned to 
operational state within τ time units, the customer receives compensation of α for each time unit 
after τ; the time between τ and the completion of repair will be referred here as overtime. PW has 
length L. The total operational time during L is denoted by Lop, note that Lop ≤ L. The sum of 
overtimes during the PW is denoted by Lov. The wealth associated with A1 is given by Eq. (3). 

 
𝑤 𝐴- = 𝑅𝐿?@ + 𝛼𝐿?B − 𝐶D − 𝑃: (3) 

 
For decision option A2, customers purchase the equipment by paying Cb but do not hire a 

PW. Each failure during L requires the customer to pay a repair price of Cs. The equipment does 
not generate revenue in failed state and no compensation is received when time until repair takes 
too long. The wealth associated with A2 is given in Eq. (4), where N is the number of failures during 
L. 

 
𝑤 𝐴F = 𝑅𝐿?@ − 𝐶D − 𝐶G𝑁 (4) 

 
To choose among the strategies, customers take into account the expected utility 

associated with each respective wealth given by each option. Due to this and their homogeneity 
with respect to risk behavior, all M customers choose the same strategy. 

 
2.4. Manufacturer’s decision problem 

 
The OEM must define Pw, Cs and M in order to maximize their expected profit, given that 

customers choose among A0, A1 and A2 depending on these parameters. When customers choose 
A0, the OEM has expected profit equal to zero. When customers choose A1, the OEM’s expected 
profit is expressed by Eq. (5), where Cr is the cost of each repair for a unit. Nj is the number of 
failures and Lov,j is the overtime for customer j, respectively. 

  

𝜋 𝑃:, 𝐶G,𝑀; 𝐴- = 𝐸 𝑃: − 𝐶L𝑁M − 𝛼𝐿?B,M

N
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 (5) 

 
If customers decide for option A2, the OEM’s expected profit is as in Eq. (6). 

 

𝜋 𝑃:, 𝐶G,𝑀; 𝐴F = 𝐸 𝐶G − 𝐶L 𝑁M

N

MO-

 (6) 

 
3. Model solution 
 
3.1. Customer’s optimal strategy 

 
Given a set of Pw, Cs and M, the customer must estimate their expected utility associated 

with Eqs. (3) and (4) and make their decision [Ashgarizadeh and Murthy 2000]. 
A0 results in expected utility equal to zero, as shown in Eq. (7). 

 
𝐸 𝑈 𝐴$; 𝑃:, 𝐶G,𝑀 = 𝐸 𝑈 𝑤 𝐴$ = 0 (7) 
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A1 results in expected utility given by Eq. (8). 

  

𝐸 𝑈 𝐴-; 𝑃:, 𝐶G,𝑀 = 𝐸 𝑈 𝑤 𝐴- =
1
𝛽

1 − 𝑒9 QR4ST 𝐸 𝑒,9 UVWX4YVWZ  (8) 

 
A2 results in expected utility as in Eq. (9). 

 

𝐸 𝑈 𝐴F; 𝑃:, 𝐶G,𝑀 = 𝐸 𝑈 𝑤 𝐴F =
1
𝛽

1 − 𝑒9QR𝐸 𝑒,9 UVWX,Q[\  (9) 

 
3.2. Manufacturer’s optimal strategy 

 
Due to the assumption of perfect information, the OEM is aware that customers decide 

based on their expected utilities, being able to predict which strategy customers will choose given 
a set of Pw, Cs and M. In order to obtain maximum profit, the OEM estimates optimal Pw and Cs 
according to different values of M, until an optimal M is found, yielding the greatest possible profit 
to the OEM. 

Since E[U(w(A0))] = 0, the OEM wants to find Pw
*(M) and Cs

*(M), optimal values for Pw 
and Cs given M, respectively, that also make E[U(w(A1))] = 0 and E[U(w(A2))] = 0, meaning that 
E[U(w(A0))] = E[U(w(A1))] = E[U(w(A2))] = 0. In other words, the expected utilities yielded by 
each of the strategies are equal. In this scenario, customers do not have preference for any of the 
strategies over the others. This allows the OEM to set the service prices so that customers choose 
the option that results in the greatest OEM’s expected profit. The OEM sets Pw = Pw

*(M) and Cs > 
Cs

*(M) when π(Pw
*(M),Cs

*(M),M;A1) > π(Pw
*(M),Cs

*(M),M;A2) (strategy A1 is more lucrative than 
strategy A2), inducing customers to choose option A1. If π(Pw

*(M),Cs
*(M),M;A2) > 

π(Pw
*(M),Cs

*(M),M;A1) (strategy A2 is more lucrative than strategy A1), the OEM sets Pw > Pw
*(M) 

and Cs = Cs
*(M), causing customers to choose option A2. The OEM also sets M = M* by choosing 

M* that maximizes π(Pw
*(M),Cs

*(M),M;A1) or π(Pw
*(M),Cs

*(M),M;A2), which means that M* is the 
number of customers that result in the greatest possible profit. 

In order to find Pw
*(M), as mentioned before, the OEM sets E[U(w(A1))] = 0, which 

results in Eq. (10) when solving for Pw
*(M). 

 

𝑃:∗ = −𝐶D −
1
𝛽

ln 𝐸 𝑒,9 UVWX4YVWZ  (10) 

 
In the case of Cs

*(M), the OEM sets E[U(w(A2))] = 0, finding Eq. (11). Notice, however, that Cs 
must be found by using a numerical method, since Eq. (11) does not present a closed form for Cs. 

 
𝛽𝐶D + ln 𝐸 𝑒,9 UVWX,\Q[∗ = 0 (11) 

 
3.3. Simulation approach 

 
In order to find the solution for the model presented in this paper, we must find, for each 

customer, the number of failures (N), the total downtime (Lop), and the total overtime (Lov), present 
in Eqs. (8), (9), (10) and (11). Therefore, the model presented in section 2 was replicated via 
discrete event simulation (DES) [Ross 2013]. This allowed us to extend the model developed in 
[Santana et al. 2016] and [Ashgarizadeh and Murthy 2000], in which times until failures follow an 
exponential probability distribution. In the case of [Ashgarizadeh and Murthy 2000], in order to 
solve the problem analytically, it was necessary to consider the approximation Lop » L. In the model 
presented in this paper, due to using a DES approach, we were able to simulate failures following 
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the conditioned Weibull distribution given in Eq. (1) and use simulated values for Lop, thus not 
using the aforementioned approximation. 

The complete solution of the model is done through the following steps: (i) set the initial 
population size M = 1 (number of devices/customers) (ii) simulate the G/M/1 queue considering 
the description given in subsection 2.2, returning the values for N, Lop and Lov; (iii) estimate Pw and 
Cs by using Eqs. (10) and (11), respectively; (iv) estimate the OEM’s profit for each customer 
strategy, using Eqs. (5) and (6); (v) increment M by 1 (M = M + 1) and repeat steps (ii)-(iv), until 
the M that maximizes the OEM’s expected profit is found (this can be detected when the OEM’s 
expected profit decreases for both A1 and A2 when M is incremented). 

 
4. Application and analysis 

 
4.1. Application example 

 
A numerical example to illustrate the model will be presented in this section, allowing us 

to analyze its behavior. The steps given in subsection 3.3 were followed, implemented using C++ 
programming language. The simulation was replicated 1,000,000 times. The parameters used in 
this application are as follows: q = 4,000 h; k = 2; µ = 0.05 / h; α = 3 (103) $ / h; β = 0.2; τ = 24 
h; Cb = 900 (103) $, Cr = 4 (103) $; R = 0.18 (103) $ / h; L = 8,760 h. 

Results are shown in Table 1. The OEM decides to sell the equipment to M = M* = 34 
customers; the price of the PW is set as Pw = Pw*(M*) = 682,006; the price of each repair on 
demand is set as Cs = Cs*(M*) = 37,707; customers choose strategy A1, buying the equipment and 
purchasing a PW; the OEM’s expected profit is π(Pw*,Cs*,M*;A*) = 13,067,343. 

 
Table 1 – Main results of the numerical examples 
Variable Value 
M* 34 
Pw ($) 682,006 
Cs ($) 37,707 
A* A1 
π(Pw,Cs,M*;A*) ($) 13,067,343 

 
Table 2 shows further information about the queue performance, as well as the expected 

penalties received by each customer and expected total paid by the OEM. Each equipment unit is 
expected to fail 4.61 times during L; each unit is expected to remain in failed state (downtime) for 
174.46 h (2% of L); the expected overtime for each device is 93.11 h; each customer receives a 
expected value in penalties of $ 279,330; in total, the OEM expects to pay $ 9,497,220 in penalties. 
Note, however, that the OEM’s expected profit of $ 13,067,343 already takes into account the 
payment of these expected penalties, i.e., the penalties are not deduced from its given profit. Also 
notice that customers are willing to pay a high value for Pw, which is equal to $ 682,006, the 
equivalent of 75.8% of the device purchase price; one of the reasons this price is relatively high, is 
due to the fact that customers expect beforehand to receive $ 279,330 in penalties, which is also a 
considerably high value, but results in the customers’ willingness to pay for the PW to be high as 
well. 

 
Table 2 – Queue performance measures 

Variable Value 
Expected server idle time (h) 5,661.96 
Expected number of failures E[N] 4.61 
Expected downtime E[T - Lop] (h) 174.46 
Expected overtime E[Lov] 93.11 
Expected penalties per customer ($) 279,330 
Expected total penalties paid by the OEM ($) 9,497,220 
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4.2. Sensitivity analysis 
 
In this section, we present a sensitivity analysis for several of the model’s parameters, 

showing how each parameter affects the behavior of the OEM, the customers, and the interaction 
between them. 

Table 3 shows how the model’s results behave when the Weibull distribution scale 
parameter q varies. When q is smaller, the device fails more often, and thus its availability is 
reduced, i.e., the expected downtime increases. As a result, the OEM choose lower values of M 
(sells the equipment to fewer customers) when q is lower, and higher values of M when q is higher. 
The OEM’s expected profit is proportional to q. 

 
Table 3 – Effect of variations on q 

q (h) M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
3500 24 682,275  32,403  A1 8,375,125  
3750 28 681,890  35,077  A1 10,586,947  
4000 34 682,006  37,707  A1 13,067,343  
4250 39 681,665  39,967  A1 15,822,131  
4500 45 681,463  42,449  A1 18,869,456  

 
Table 4 presents the effects of variations on the Weibull distribution shape parameter k. 

When k is increased, the frequency of failures increases over time, that is, k dictates how fast the 
equipment degrades. Similar to variations on q, when failures occur more often (when k is higher) 
the OEM chooses a lower value of M, and vice versa. Beyond varying the number of customers, 
the OEM’s expected profit is lower when k is higher. 

 
Table 4 – Effect of variations on k 

k M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
1.8 44 681,729 39,734 A1 17,847,003 
1.9 38 681,707 38,870 A1 15,272,940 
2.0 34 682,006 37,707 A1 13,067,343 
2.1 29 681,830 36,239 A1 11,167,206 
2.2 26 682,106 35,293 A1 9,547,597 

 
The effect on the model due to variations on µ can be found in Table 5. When µ is lower, 

the OEM is not able to repair as much equipment units over time as when µ is higher; repairs take 
longer for lower values of µ. Therefore, the number of customers M is proportional to µ. Also, 
when µ = 0.03, the OEM induces customers to choose not to purchase a PW, since the OEM would 
have to pay too much in penalties if customers purchased a PW. When µ is increased, the OEM’s 
expected profit also increases, due to its capacity to serve more customers, therefore receiving 
higher revenue. 

 
Table 5 – Effect of variations on µ 

µ (h-1) M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
0.03 32 691,642  29,075  A2 3,495,336  
0.04 24 683,302  37,535  A1 8,142,875  
0.05 34 682,006  37,707  A1 13,067,343  
0.06 44 680,914  37,401  A1 18,379,703  
0.07 54 679,968  37,209  A1 23,979,146  

 
Variations on the customers’ risk aversion parameter b are displayed in Table 6. For all 

values of b tested, the number of customers M remained the same. However, changes can be 
noticed. For lower values of b (which means customers are less risk-averse), customers accept to 
pay more for either the PW or repairs on demand. Consequently, it is possible to observe that the 
OEM’s expected profit is inversely proportional to b. 
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Table 6 – Effect of variations on b 

b M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
0.10 34 693,298 41,317 A1 13,444,848 
0.15 34 686,050 38,701 A1 13,191,644 
0.20 34 682,006 37,707 A1 13,067,343 
0.25 34 679,297 37,010 A1 12,972,090 
0.30 34 677,235 35,857 A1 12,903,125 

 
Table 7 shows the effects of variations on R, the customers’ revenue per operational hour 

of the device. When R is higher, customers accept to pay more for the services and, consequently, 
the OEM’s expected profit is higher. The OEM sells a slightly higher number of equipment when 
R is raised. 

 
Table 7 – Effect of variations on R 

R ($ 103) M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
0.170 32 594,333 32,797 A1 10,224,717 
0.175 33 638,164 35,042 A1 11,622,338 
0.180 34 682,006 37,707 A1 13,067,343 
0.185 34 725,556 39,983 A1 14,548,292 
0.190 35 769,401 42,069 A1 16,065,545 

 
Table 8 shows how the model behaves when a, the penalty per hour of overtime, varies. 

When a is low, the OEM can serve more customers without paying as much in penalties, therefore 
raising its expected profit. For high values of a, the OEM pays too much in penalties, making it 
induce customers not to acquire the PW. For instance, when a = 5.0, customers do not hire the 
PW. 

 
Table 8 – Effect of variations on a 

a ($ 103) M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
1.0 50 684,796 33,430 A1 23,463,279 
2.0 39 682,876 36,512 A1 16,837,274 
3.0 34 682,006 37,707 A1 13,067,343 
4.0 29 680,945 38,470 A1 10,464,772 
5.0 55 689,272 31,567 A2 6,744,977 

 
Table 9 shows variations on t, the maximum time for the OEM to repair the equipment 

without paying penalties. As well as a, t changes how much penalty is paid; while a dictates how 
much penalty is incurred per hour of overtime, t influences how much overtime occurs, i.e., for 
lower values of t, overtime occurs earlier (and thus more often), while for higher values of t, 
overtime occurs later (and thus less often). Therefore, for lower values of t, the OEM is able to 
serve less customers, while its expected profit is lower; for higher values of t, more customers are 
served and the OEM’s profit is higher. Customers accept to pay higher prices for hiring a PW when 
t is lower. 

 
Table 9 – Effect of variations on t 

t (h) M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
12 30 690,534 37,939 A1 10,150,958 
18 32 686,252 37,601 A1 11,692,397 
24 34 682,006 37,707 A1 13,067,343 
30 35 677,399 37,191 A1 14,279,721 
36 35 672,297 37,032 A1 15,326,099 
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4.3. Comparison with the analytical approach 
 
For validation and comparison, we replicated the application example given by  

[Ashgarizadeh and Murthy 2000]. The parameters used were: q = 1,250 h; k = 1; µ = 0.02 / h; α = 
0.06 (103) $ / h; β = 0.1; τ = 70 h; Cb = 300 (103) $, Cr = 5 (103) $; R = 0.015 (103) $ / h; L = 
40,000 h. 

In our approach, the optimal number of customers is M = 17, the same result obtained by 
the analytical solution. The prices charged for the warranty and repairs, as well as the OEM’s 
expected prices were different in the two approaches, as found in Table 10. Notice that our 
approach results in smaller values for prices and OEM’s profit. This is due to the approximation 
used in the analytical method, Lop » L, which considers the equipment to generate revenue for the 
entire duration of the analyzed time, not considering equipment downtime to stop revenue 
generation, consequently resulting in higher values in the analytical approach. 

 
Table 10 – Comparison of results from the analytical and simulation methods 

Method M Pw ($) Cs ($) A π(Pw,Cs,M*;A*) ($) 
Analytical 17 369,948 6,614 A1 1,650,205 
Simulation 17 334,238 5,803 A1 1,429,824 

 
5. Conclusions 

 
This paper presented a simulation approach to the problem of the interaction between 

OEM and customers regarding the purchase of equipment and repair services. This model extends 
the simulation approach presented in [Santana et al. 2016] by considering equipment degradation 
with the use of Weibull distributed times until failures, along with minimal repairs. This extension 
allows the present model to cover a broader range of situations, while also being able to model 
problems covered by the models of [Santana et al. 2016] and [Ashgarizadeh and Murthy 2000]. 
We also extend the analytical approach in [Ashgarizadeh and Murthy 2000] by not considering the 
approximation Lop » L, which was needed in their approach. Regarding computational cost, our 
approach depends on the efficiency of the simulation methods used; the application example in 
subsection 4.1 takes about 15 minutes to run in a consumer-grade personal computer. Although the 
analytical approach given by [Ashgarizadeh and Murthy 2000] requires the evaluation of much 
fewer equations, the model’s metrics from the queueing system must be obtained analytically, and 
that approach also requires the evaluation of integrals. It can also be noted that the present 
simulation approach allows for easier adoption of different modeling systems for equipment 
failures and repairs. 

Further improvements on this model are concern of our ongoing research, and are listed 
as follows: (i) incorporation of imperfect repair effectiveness, characterizing a generalized renewal 
process (ii) inclusion of different maintenance policies, such as preventive and predictive 
maintenance interventions; (iii) adoption of a two-dimensional warranty, using, for example, 
equipment usage rate into account; (iv) consideration of incomplete information, causing the 
customers and/or the OEM to not be able to know exactly the equipment performance and 
availability. 
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