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ABSTRACT 
 
 

Production planning literature is rich of approaches and models proposed to cope with different forms 
of uncertainty. In traditional optimization models, specific probability distributions for random 
variables are assumed known. In many real-world situations, however, decision-makers do not have 
precise information about future demand. This is particularly critical in engineering-to-order (ETO) 
production systems which are associated with high complexity and uncertain situations. Within this 
context, the objective of this paper is to present a robust optimization reformulation of a tactical 
capacity planning model to incorporate information relative to process uncertainty. This study refers 
to an action research that was realized in a real-world ETO industrial setting. The model aims at 
solution robustness (or stability) and intends to enhance and support the decision-making process of 
the studied setting.  
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1 Introduction 
In the engineering-to-order (ETO) context, the production flow is entirely driven by actual customer 
orders with the decoupling point located at the design stage (Gosling and Naim, 2009; Grabenstetter 
and Usher, 2014; Powell et al., 2014). ETO processes are highly knowledge intensive and are often 
built on tacit knowledge, as product structures are subject to constant changes in terms of design and 
full automation of production processes is often not feasible due to the customer specific requirements 
(Willner et al., 2014). The ETO context is associated with chaotic production in high-complexity and 
high-uncertainty situations (Gosling and Naim, 2009; Yang, 2013), where the ability to address 
instability in demand and to respond to demand modifications over time is crucial (Hans et al., 2007; 
Zorzini et al., 2008). Some of the most common problems associated with ETO planning processes are 
difficulties in estimating lead-times and delivery dates and conflicts between projects and manufacture 
schedules (Pandit and Zhu, 2007). Management must rely on a rough estimation of the impact of an 
incoming order on resource utilization and eventually adjust capacity, as micro process planning has 
not been performed yet (Grabenstetter and Usher, 2014). In general, detailed information becomes 
available only gradually leading to a lack of information in the tactical planning stage. In other words, 
there is a significant level of uncertainty in this context. 
Proactive planning approaches try to incorporate information about uncertainty in the baseline plans 
so that it can be protected, as well as possible, against future disruptions, i.e., aiming at stability 
(Herroelen and Leus, 2004; Chtourou and Haouari, 2008; Deblaere et al., 2011; Alfieri et al., 2012). 
In traditional decision support models that consider uncertainty, precise values for parameters and 
specific probability distributions for random variables are assumed, as in stochastic models (Wullink 
et al. 2004; Ebben et al., 2005; Bertsimas and Thiele, 2006; Lusa and Pastor, 2011; Zhen, 2012). Such 
models have been successfully used in particular situations where an accurate probabilistic description 
of the randomness is available. In practice, however, the decision-maker often does not have such 
precise information (Bredstrom et al., 2013), especially when there is a lack of historical data and when 
the demand refers to new items subject to a challenge in estimating probabilities.  
In these cases, robust optimization may be applied as it is well-suited to the limited information 
available in real-life problems (Bredstrom et al., 2013, Gorissen et al., 2015). According to this 
approach, the random variables are modeled as uncertain parameters belonging to a convex uncertainty 
set and the decision-maker protects the system against the worst case within that set. Roughly defined, 
a robust production plan is the one that remains valid (i.e., feasible or inexpensive to turn into feasible) 
regardless of the variability resulting from the uncertainty inherent to the production process (Aghezzaf 
et al., 2010).  
Within this context, the objective of this paper is to present a robust optimization reformulation, based 
on Bertsimas and Sim (2004)´s framework, of a tactical capacity planning model to include information 
relative to the variability of critical parameters in the planning process. This study, which is detailed 
in Carvalho et al. (2016), refers to an action research that was realized in a real-world ETO industrial 
setting. The reformulation proposed incorporates uncertainty relative to the production activities 
processing times and permits the adjustment of the decision-maker´s attitude towards uncertainty. Real 
data is used to evaluate the behaviour of the proposed robust model for different levels of protection 
against the degree of conservatism of the plans generated. This robust model aims at solution 
robustness (or stability) and intends to enhance and support the decision-making process of the studied 
setting. 
The remainder of the paper is organized as follows. Section 2 briefly presents the theoretical 
background on robust optimization. Section 3 describes the real-world problem studied. In Section 4 a 
deterministic planning model is presented and Section 5 offers the robust optimization reformulation 
of this model. Section 6 considers its application in a real-world case and Section 7 presents the 
conclusions of this study. 
2 Theoretical background 
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Production planning related literature is very rich of approaches and models that were proposed to cope 
with different forms of uncertainty (Aghezzaf et al., 2010). A tactical production planning model which 
does not integrate the variability of critical parameters in the planning process often results in worthless 
plans or at the best in plans that must be revised frequently. Moreover, a plan based on incorrect data 
might be infeasible or achieve poor performance when implemented (Bertsimas and Thiele, 2006, 
Aghezzaf et al., 2010). Many authors (Herroelen and Leus, 2004; Tolio and Urgo, 2007; Chtourou and 
Haouari, 2008; Van de Vonder et al., 2008; Deblaere et al., 2011; Alfieri et al., 2012; Artigues et al., 
2013; Radke et al., 2013) support that the baseline schedule must be robust and therefore should 
incorporate a certain degree of variability anticipation. According to these authors, the robustness 
concept may refer to the solution robustness or stability (i.e., the insensitivity of planned activity start 
times to schedule disruptions) or to the solution quality robustness (i.e., the insensitivity in terms of 
the objective function). Lagemann and Meier (2014) highlight that robustness includes both stability 
(i.e., resilience) and flexibility (i.e., ability to adapt to unforeseen events) and therefore a robust plan 
should contain a stable basic plan and one or several back up plans that need to work together. Policella 
et al. (2004) defines that a plan is robust when it can absorb disruptions (external events) without loss 
of consistency while keeping the pace of execution, whereas Khakdaman et al. (2015) interpret that a 
robust plan is one that remains valid for a longer time and is insensitive to the effects of uncertainties. 
Within the field of optimization under uncertainty, stochastic models refer to approaches that require 
full knowledge of the probabilistic information of the uncertain data (Mulvey et al., 1995; Bredstrom 
et al., 2013). On the other hand, as full knowledge of probabilistic information is rarely available in 
practice, robust optimization approaches have received a lot of attention as the uncertainty of the 
parameters is modeled as lower and upper bounds with no need for exact distributions (Bredstrom et 
al., 2013, Gorissen et al., 2015). Soyster (1973) gave the first steps in robust optimization by proposing 
a linear optimization model to construct excessively conservative solutions that were feasible for all 
data in a given uncertainty set without specifying these distributions. To address Soyster’s 
overconservatism and also to retain the advantages of his linear programming framework, Bertsimas 
and Sim (2004) propose a robust optimization approach to address data uncertainty that allows the 
degree of conservatism of the solution to be controlled (i.e., protection is provided for the case where 
only a pre-specified number of the input coefficients changes from its base value).  According to this 
approach, a parameter ߁ also known as the budget of uncertainty, reflects the decision-maker’s attitude 
towards uncertainty. 
Gabrel et al. (2014) offer an overview of recent developments in robust optimization and state that this 
approach has come to encompass several others to protecting decision-maker against stochastic 
uncertainty. The robust optimization modeling technique has been successfully applied to different 
applications concerning production, scheduling, inventory, portfolio management, vehicle routing, 
among others (Alem and Morabito, 2012). Moreover, Gorissen et al. (2015) provide a guide for 
practitioners to understand and apply this approach. 
3 Problem description 
The real-world industrial setting considered in this study is a medium-sized company that produces a 
wide range of customised and complex equipment, such as high-pressure boilers and sophisticated 
reactors, based on the ETO policy. These equipment are composed of several part components which 
must be designed by the company´s engineers to be produced. This process may take several months 
(from 3 to 18 months). In this context, the company´s managers generate a midterm production plan 
by assessing simultaneously demand and the available capacity to accommodate demand overloads 
through meticulous internal capacity adjustments (i.e., by authorizing overtime or hiring more 
operators) or subcontracting components. They must decide whether to accept or not a given set of 
projects considering the workload of already committed orders. The team must also define due dates 
and calculate the overall production costs.  
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For planning purposes, the company´s demands must include the committed workload (i.e., ongoing 
projects that have been detailed and started to be produced), new projects (i.e., projects which have 
deadlines but that have not been started in production neither have been detailed by the design 
engineers) and the incoming orders (i.e., projects, in the order accept/reject phase, that have not yet 
specified with exactness a release date or a deadline). A major concern highlighted by the company´s 
managers when generating a plan refers to the variability encountered within the production process. 
For instance, the new projects and the incoming orders are sensitive to uncertainty referring to the 
estimated processing times (i.e. since design phase is not concluded when the plan is generated). In 
one particular situation, a significant delay between the original production plan and the executed 
production of a specific boiler occured due to the underestimation of processing times. This occurrence 
resulted in higher costs and additional time to complete the job. 
4 The deterministic planning model 
To address the studied problem, Carvalho et al. (2015) developed a deterministic Mixed-Integer Linear 
Programming model to support tactical capacity planning by optimally balancing demand with the 
available capacity. It is a cost minimization formulation of an ETO production system that exploits 
capacity flexibility by considering nonregular capacity alternatives (i.e., overtime, subcontracting and 
hiring personnel). The model also admits the representation of the production flow with multiple 
processing stages and overlapping activities. The objective function minimizes the overall variable 
production costs involving production processing and overtime costs, capacity change costs, personnel 
payroll and subcontracting costs. This model considers several types of constraints summarized in 
Table 1.  
Table 1: Types of constraints 

Group Types of constraints Description 

Production 
flow 
related 

Release date and 
deadline  

To guarantee that activities are processed within their time 
windows. 

Non-interruption flow To establish that once started, an activity must be 
processed in all subsequent periods until it is finished. 

Maximum and 
minimum intensities 

To ensure that the intensity of an activity can never be less 
than the minimum intensity nor more than the maximum 
intensity permitted in a single time period. 

Cadenced flow To guarantee the activities’ variable execution progress 
mode, their overlapping behaviour and the non-fixed 
precedence relationship among them.  

Capacity-
related 

Regular, overtime and 
subcontracting 

To guarantee the balance within an activity's processing 
time and its fractions in terms of regular, overtime and 
subcontracting hours. 

Maximum number of 
working hours 

To establish the upper bound for internal capacity, which is 
available in terms of regular working hours and overtime 
working hours  

Availability of 
employees  

To establish the upper bound of available employees, 
considering is the capacity changes (hiring and firing) along 
the time periods 

Committed workload  To ensure that the available capacity can never be more than 
the already committed workload and the incoming orders 
allocated in a single time period. 

Minimum employment 
period  

To avoid instability by restricting the capacity changes 
within the time periods 
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For the sake of simplicity, this paper only presents the parts of the deterministic model which are key 
to develop the robust optimization formulation. The complete formulation may be found in Carvalho 
et al. (2015). As the process uncertainty modelled refers to the production activities processing times, 
only the workload constraint (1) is detailed here as it is directly affected by this type of variability.  ෍ ܳ௔௪ݔ௔௧௔ − ෍ ௔௧௔|ொ௔௪வ଴ݏ ≤ ௪௧ܧܪܴ) + ௪௧ܧܰ(௪௧ܧܪܱ − ,ݓ∀          ௪௧ܪܹ ݐ|ݐ∀ ≤  ܥܨ

 

(1) 

This constraint ensures that, during the fixed capacity periods, the sum of all activities processed in a 
given workcenter minus what is subcontracted must be equal to or smaller than the internal capacity 
minus the already committed workload. During the fixed capacity periods, the internal capacity is fixed 
and the only nonregular capacity options refers to adopting overtime (i.e., changing capacity levels by 
hiring and firing personnel is not permitted). Table 2 defines the parameters and variables that compose 
the workload constraint. 
 

Table 2 - Parameters and variables in the workload constraint 
Parameters FC fixed capacity periods 

NEwt number of employees allocated at work centre w in period t within de fixed 
capacity periods 

OHEwt number of overtime hours per employee per period at work centre w 
Qaw processing time of activity a at work centre w 
RHEwt number of regular working hours per employee per period at work centre w   
WHwt number of hours relative to the workload allocated to work centre w in 

period t 
Variables xat processed fraction of activity a in period t 

sat   number of subcontracted hours processing activity a in period t 
 
 
5 The robust optimization approach  
This section describes the robust optimization reformulation of the deterministic model previously 
presented. The techniques introduced by Bertsimas and Sim (2004) are employed to derive robust plans 
when production activities processing times are independent and bounded random variables. The 
motivation for adopting this approach includes the practical advantages over other possibilities found 
in the academic literature. Three main characteristics of the robust formulation were considered when 
choosing this approach to address the studied problem: 

 It does not require knowledge on the probabilistic distributions of the uncertain data (which is 
difficult to obtain in the studied setting); 

 It preserves the linearity of the original deterministic model; 
 It allows the decision maker to control the degree of conservatism of the generated plans. 

 
 
5.1 The robust formulation 
The processing time of activity a at work centre w is given by the parameter ܳ௔௪ where ܳܦ௔௪ 
represents the maximum possible deviation of the activity processing time from its mean value, Qୟ୵. 
In the robust model, each entry ܳ௔௪ is represented as a symmetric and bounded random variable ෨ܳ௔௪ with unknown probability distribution and with values in the interval [ܳ௔௪– ܳ ܳ ,௔௪ܦ ௔௪+ ܳ  .[௔௪ܦ
The subset K represents the set of coefficients ܳ ௔௪, a  K, which are subject to uncertainty. Moreover, 
the random variable k෨ ୟ୵ is the scaled deviation of ෨ܳ௔௪  from its nominal value and is defined by ෨݇௔௪ = ( ෨ܳ௔௪ − ܳ௔௪)/ܳܦ௔௪, belonging thus to the interval [-1,1]. 
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The parameter Γ୵୲ is introduced in order to adjust the model robustness against the conservatism of 
the solution. It is also known as the budget of uncertainty which reflects the decision-maker’s attitude 
towards uncertainty. As Γ୵୲ is an integer in this problem, it is interpreted as the maximum number of 
the uncertain parameters that can deviate from their nominal values and it may vary from 0 (the 
deterministic case, when no uncertainty is considered) to |K| (the worst case, when all deviations 
assume their highest value). Table 3 presents the additional parameters and variables that are used to 
develop the robust formulation. 
 

Table 3 - Additional parameters and variables (adapted from Carvalho et al., 2016) 
wt Parameter to adjust the model robustness 

QDaw Deviation in the processing time of activity a at work centre w 
kaw Scaled deviation 

wt Robustness variable 
pawt Auxiliary robustness variable 

 
To build the robust counterpart of the model, it is necessary to modify the formulation of the workload 
constraint (1) to incorporate uncertainty. Therefore, we consider that the sum of the activities durations 
and their deviation must be equal to or smaller than the internal capacity plus subcontraction minus the 
already committed workload. This is presented in constraint (2), which refers to a bilevel programming 
problem. The upper level problem determines the optimal value for variables ݔ௔௧∗  so that the overall 
costs are minimized. This problem is subject to the worst-case response observed by the random 
parameters from within the fixed capacity periods.  

 ෍ ܳ௔௪ݔ௔௧௔ + ∑}௞ݔܽܯ ௔௧݇௔௪௔ݔ௔௪ܦܳ | ∑ ݇௔௪ ≤௔ ;௪௧߁  ݇௔௪ ∈ [0,1]} − ෍ ௔௧ݏ ≤௔|ொ௔௪வ଴ ௪௧ܧܪܴ)  + ௪௧ܧܰ(௪௧ܧܪܱ − ,ݓ∀  ௪௧ܪܹ ݐ|ݐ∀ ≤  (2)  ܥܨ
Applying the robust optimization framework developed by Bertsimas and Sim (2004), an auxiliary 
problem is formulated (3-5). Its objective is to maximize the sum of all deviations over the set of all 
admissible realizations of the uncertain parameters, given an optimal decision ݔ௔௧ = ∗௔௧ݔ .  

௞ݔܽܯ  ෍ ∗௔௧ݔ௔௪ܦܳ ݇௔௪௔  (3) 

Subject to ෍ ݇௔௪௔ ≤ ௪௧      (4) ݇௔௪߁ ≤ 1    ∀ܽ (5) 

If ߁௪௧ = 0, the kୟ୵ for all a are forced to 0, so that parameters ෨ܳ௔௪ are equal to their mean value ܳ௔௪ 
and there is no protection against uncertainty. On the other hand, when ߁௪௧ =  the ݇௔௪ for all a are ,ܭ 
forced to 1 (in this particular problem) and constraint (4) is completely protected against uncertainty, 
which yields a very conservative solution. For values in between 0 and K, the decision-maker can make 
a trade-off between the protection level of the constraint and the degree of conservatism of the solution.  
Following the same rationale of Bertsimas and Sim (2004), the dual of model (3)-(5) is stated next: ݊݅ܯ௣, ௪௧ ௪௧ߨ + ෍ ௔௪௧௔݌  (6) 
Subject to  
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௪௧ߨ + ௔௪௧݌   ≥ ∗௔௧ݔ௔௪ܦܳ  ௪௧ߨ (7) ܽ∀    ≥ ௔௪௧݌ (8) 0 ≥ 0   ∀ܽ (9) 

This dual problem has two dual variables (π୵୲, pୟ୵୲) that are associated to constraints (4) and (5), 
respectively. By strong duality, as model (3)-(5) is feasible, convex and bounded for all ߁௪௧ ∈  [0,  ,[|ܭ|
then its dual problem (6)-(9) is also feasible and their optimal objective function values coincide (i.e., 
no duality gap exists). Substituting (6)-(9) in constraint (2), the robust single-level counterpart is 
obtained, as presented through constraints (10)-(13).     ෍ ܳ௔௪ݔ௔௧௔ + ௪௧ߨ௪௧߁ + ෍ ௔௪௧௔݌ − ෍ ≥௔௧௔|ொ௔௪வ଴ݏ ௪௧ܧܪܴ) + ௪௧ܧܰ(௪௧ܧܪܱ − ,ݓ∀          ௪௧ܪܹ ݐ|ݐ∀ ≤          ܥܨ
 

 

(10) 

௪௧ߨ + ௔௪௧݌ ≥ ,ݓ∀        ௔௧ݔ௔௪ܦܳ ݐ|ݐ∀ ≤ ,ܥܨ ௪௧ߨ (11) ܽ∀ ≥ ,ݓ∀       0 ݐ|ݐ∀ ≤ ௔௪௧݌ (12) ܥܨ ≥ ,ݓ∀       0 ݐ|ݐ∀ ≤ ,ܥܨ ∀ܽ (13) 
Finally, the complete robust optimization model proposed herein consists of the deterministic model 
with the original workload constraint (1) being replaced by constraints (10) to (13) to consider 
uncertainty in the production activities processing time. The robust model is detailed in Carvalho et al. 
(2016). This model minimizes the overall variable production costs and guarantees that if up to Γ୵୲ 
coefficients change their values within the permited interval (i.e., [ܳ௔௪– ܳܦ௔௪, ܳ௔௪+ ܳܦ௔௪]), then 
the solution of the robust optimization model will remain stable. In other words, the solution of this 
model is a robust solution.  
5.2 Probability bounds for constraint violation 
It is possible to estimate constraint violation probability bounds for the solutions obtained with the 
robust model. In this research, the theoretical bounds proposed by Bertsimas and Sim (2004) were not 
adopted for two reasons. The first one refers to the fact these authors´approach refers to a situation 
where there is a single constraint to be violated as opposed to the studied problem where multiple 
constraints are being assessed. The second reason is that processing times distributions are often 
asymmetric (Juan et al., 2014) and  Bertsimas and Sim (2004)´s approach assumes symmetrical 
probability distributions.   
In this sense, Monte Carlo simulation was applied to estimate constraint violation probability bounds 
(see Figure 1). As simulation requires knowledge of the probability distribution on the uncertainty set 
and this knowledge is unclear, random values for the processing time deviations (ܳܦ௔௪) were drawn 
from two different distributions. In this sense, a normal distribution was first applied. Additionally, to 
explore the effects of using a nonsymmetrical distribution, random values were generated considering 
a lognormal distribution (characterized by being non-negative, asymmetrical and skewed rightwards). 
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Fig. 1: Monte Carlo simulation process 

Within this simulation process, the assessed plan is executed based on the random values drawn from 
these distributions. More specifically, the adjusted workload constraint (14) is checked, considering 
that there is now an extra term referring to the processing time deviation. In this analysis, variables ݔ௔௧ 
and ݏ௔௧ assume the values from the original assessed plan, whereas ܳ௔௪, ܴܧܪ௪, ,௪ܧܪܱ  ௪௧ are all parameters.  ෍ܪܹ  ௪ andܧܰ ܳ௔௪ 

௔ ௔௧ݔ + ෍  ௔௪ܦܳ
௔ ௔௧ݔ −  ෍ ௔௧௔ݏ  ≤ ௪௧ܧܪܴ) + ௪௧ܧܰ (௪௧ܧܪܱ  −  ௪௧     (14)ܪܹ 

This process is repeated for thousands of times and the results of all iterations are aggregated to 
calculate the percentage of violation occurrences. In this sense, for each assessed production plan 
(which refers to a specific ߁ parameter), it is possible to estimate the probability of constraint violation, 
that is, the probability of the plan to absorb these deviations within the fixed capacity periods, without 
amplifying effects to the following periods. This measures the solution robustness of the production 
plans that are subject to deviations in the processing times. 
 
6 Application 
This section presents the main findings obtained with the application of the robust optimization model 
to solve a real-world planning problem. The idea is to evaluate the behaviour of the model for different 
levels of protection against the constraint violation by varying the robust parameter ߁. The data from 
the real-world ETO problem are described in detail in Carvalho et al. (2016). The planning horizon 
consists of 18 periods, where the three initial ones correspond to the fixed capacity periods. Twenty-
five projects were considered comprising 250 production activities besides the already committed 
workload (which corresponds to 89,750 h). The regular and overtime capacities represent 150 h and 
25 h per period per employee respectively. There are 284 employees allocated initially for all five 
workcentres considered. Additionally, historical data on former projects were used to estimate the 
processing times and the maximum expected deviations in the studied setting. For instance, these 
deviations refer to approximately 50% of the processing time, which was considered an appropriate 
value by the company´s managers. 
The results obtained from the application of the robust optimization approach generated different 
production plans. It can be noted that under uncertainty, as ߁ increases, the model tends to postpone 
more and more workload from the fixed capacity periods to the flexible capacity periods. In a sense, a 
capacity buffer is created by explicitly planning “idle” time on a work centre during the fixed capacity 
periods. That is, time is reserved in case uncertainties occur. In this sense, production is postponed and 
the increasing need of production capacity in the future periods leads to capacity change costs (i.e., 
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costs related to hiring more personnel). Consequently, the robust solutions are more expensive than 
the deterministic one (߁ = 0). 
Making a parallel with the knapsack problem, during the fixed capacity planning periods, each work 
centre’s capacity is equivalent to the fixed-size knapsack. The production workload corresponds to the 
items that are chosen to fill up the knapsack. When considering uncertainty, less workload is allocated 
to the work centre in a given period as the processing time deviation is also allocated to the work 
centre. This deviation does not appear explicitly in the production plan, as it is an “idle” time which 
corresponds to a capacity buffer. 
Comparing the production plans presented in Figure 2, in the deterministic solution, the plan does not 
consider the capacity buffer and the workload is distributed along the periods of time considering only 
the constraints of the deterministic model. On the other hand, in the fully protected situation (߁ = 85 , 
the plan is conservative, as it assumes that all 85 activities (among the 250 activities, 85 may be 
processed within the fixed capacity periods) will be penalized with the maximum processing time 
deviation. A capacity buffer is therefore dimensioned to address this “extra” demand. Comparing the 
two situations, the former represents a levelled and smoother distribution of workload while the latter 
suggests considerable increase of workload from the fixed to the flexible periods. Intermediate values 
of ߁  guarantee stability with high probability and preserve an acceptable level of performance. 

 
Fig. 2: Workload distributions (for different values of ) along the planning horizon (adapted 

from Carvalho et al., 2016) 
The trade-offs between robustness and the total expected solution cost may also be analysed through 
the results obtained. Figure 3 displays the optimal value increase in total cost (%) and the probability 
bound of workload constraint violation (%) as a function of ߁. The probability bounds were calculated 
through Monte Carlo simulation, as described in Subsection 5.2, where two distinct probability 
distributions, a normal and a lognormal, were tested.  
In the deterministic solution, the minimum cost value is not increased and there is a high probability 
of constraint violation. A lower probability of constraint violation and a higher cost are obtained with 
the more conservative values of ߁. In other words, increasing the protection (i.e., increasing the value 
of ߁ , the probability of constraint violation decreases and the minimum cost value increases. This is 
known as the price of the robustness.  
Moreover, the intermediate solutions represent little variation between the two distributions in terms 
of the probability bound of constraint violation. For both analysed distributions, the probability of 
constraint violation significantly decreases for ߁ = 15. For the maximum protection case (߁ = 85), 
there is less chance of constraint violation for the probability distributions analysed. This corresponds 
to Soyster’s approximation of the worst-case scenario where all uncertaint parameter assumes its most 
adverse value. As the processing time deviation is relatively high (i.e., 50% of the processing time) in 
this problem and as both distributions are supported on infinite intervals, even for high values of 
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߁ there may be cases where the random values drawn from these distributions represent constraint 
violation (i.e., the minimum values obtained for the probability of constraint violation do not reach 
zero).  

 
Fig. 3: Optimal value increase and probability bound of constraint violation as a function of 

(adapted from Carvalho et al., 2016) 
7 Conclusion 
The ETO production system is characterized by high-complex and uncertaint situations. In general, in 
the tactical planning level of ETO organizations, there is a lack of information as projects are gradually 
detailed along their execution. On the other hand, decisions must be made before complete information 
is available. To address this issue, a proactive planning approach is adopted to include information 
about process uncertainty into the tactical capacity plans of a real-world ETO industry setting. More 
especifically, a robust optimization framework, proposed by Bertsimas and Sim (2004), is used to 
incorporate the variability relative to the production activities processing times in a tactical capacity 
planning model. In this study, real data is used to evaluate the behaviour of the proposed robust model 
for different levels of protection against the degree of conservatism of the solutions generated.  
Although this paper provides evidence from a single firm, which limits the extent to which the findings 
can be generalised, its key contribution is to confirm and provide insights of the applicability of the 
model for the studied setting. In the first place, the proposed model does not require that the probability 
distributions of the activities processing times are known. This is crucial in the studied setting which 
lacks this type of information when planning at the tactical level. In this sense, robust optimization 
seems to be a suitable approach for developing the proposed solution. Moreover, as this approach is 
based on linear programming, the model´s solution time are small (which is very convenient for 
practical application) and it can be solved by widely available off-the-shelf software packages. And 
finally, as the robust formulation permits the adjustment of the decision-maker´s attitude towards 
uncertainty, different planning situations may be addressed. For instance, according to the company´s 
managers, this characteristic permits the adoption of a more conservative standpoint in cases involving 
innovative projects and a less conservative one in situations where projects are similar to former ones.  
Furthermore, one relevant insight of the performance of the model when varying the protection level 
refers to the postponement of production activities. This can be interpreted as a capacity buffer that 
was dimensioned (i.e., the size of this buffer is optimally dimensioned by the model according to the 
decision maker´s risk aversion behaviour) to protect the plan against uncertainty. For instance, in the 
ETO context it may be more economical to employ a capacity buffer, rather than to build an inventory 
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buffer to cope with uncertainty. In this context, it may not be feasible to have an inventory buffer due 
to all possible combinations of products or to the lack of data on future demand. In this sense, creating 
this buffer seems to be the suitable measure to provide flexibility in a proactive planning stance. 
To conclude, this research could be extended in other ways. For instance, the proposed model could 
be expanded by incorporating other types of uncertainties to assess the effects of additional variability 
on robust plans. In addition, as the ETO context is subject to different sources of uncertainty, a more 
rigorous and systematic approach could be developed to measure variability in this context.  
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