# The Carathéodory number of the $P_{3}$ convexity of Cartesian product of graphs 

Márcia R. Cappelle<br>Universidade Federal de Goiás<br>Instituto de Informática (INF) - UFG<br>marcia@inf.ufg.br

Erika M. M. Coelho<br>Universidade Federal de Goiás<br>Instituto de Informática (INF) - UFG<br>erikainf@inf.ufg.br

Hebert Coelho
Universidade Federal de Goiás
Instituto de Informática (INF) - UFG
hebert@inf.ufg.br


#### Abstract

From Carathéodory's theorem arises the definition of the Carathéodory number for graphs. This number is well-known for monophonic and triangle-path convexities and it has been studied in $P_{3}$ and geodetic convexities. However, in the last two there are not many results for Cartesian product. In this paper we determine the Carathéodory number in $P_{3}$ convexity of the following Cartesian products: $K_{n} \square K_{m}, P_{n} \square K_{m}$, and $K_{1, n} \square K_{m}$, where $K_{m}$ is the complete graph with $m$ vertices, $K_{1, n}$ is the star with $n$ leaves and $P_{n}$ is a path with $n$ vertices. Also, we present a recursive way to construct a Carathéodory set in $T_{h} \square K_{m}$, where $T_{h}$ is a full binary tree with height $h$.


KEYWORDS. Carathéodory number. $P_{3}$ Convexity. Cartesian Product.
Main area: Theory and Algorithms in Graphs (TAG)

## 1. Introduction

Graph convexities are a well studied topic. For a finite, simple, and undirected graph $G$ with vertex set $V(G)$, a graph convexity on $V(G)$ is a collection $\mathcal{C}$ of subsets of $V(G)$ such that

- $\emptyset, V(G) \in \mathcal{C}$ and
- $\mathcal{C}$ is closed under intersections.

The sets in $\mathcal{C}$ are called convex sets and the convex hull in $\mathcal{C}$ of a set $S \subseteq V(G)$ is the smallest set $H_{\mathcal{C}}(S)$ in $\mathcal{C}$ containing $S$.

Several well known graph convexities $\mathcal{C}$ are defined using some set $\mathcal{P}$ of paths of the underlying graph $G$. In this case, a subset $S$ of $V(G)$ is convex, that is, belongs to $\mathcal{C}$, if for every path $P$ in $\mathcal{P}$ whose end vertices belong to $S$ also every vertex of $P$ belongs to $S$. When $\mathcal{P}$ is the set of all shortest paths in $G$, this leads to the geodetic convexity [Cáceres et al., 2006; Dourado et al., 2010a; Everett and Seidman, 1985; Farber and Jamison, 1987]. The monophonic convexity is defined by considering as $\mathcal{P}$ the set of all induced paths of $G$ [Dourado et al., 2010b; Duchet, 1988]. Similarly, if $\mathcal{P}$ is the set of all triangle paths in $G$, then $\mathcal{C}$ is the triangle path convexity [Changat and Mathew, 1999]. Here we consider the $P_{3}$ convexity of $G$, which is defined when $\mathcal{P}$ is the set of all paths of length two. The $P_{3}$ convexity was first considered for directed graphs [Erdös et al., 1972; Moon, 1972; Parker et al., 2008; Varlet, 1976]. For undirected graphs, the $P_{3}$ convexity was studied in [Barbosa et al., 2012; Centeno et al., 2011; Coelho et al., 2014; Duarte et al., 2017].

A famous result about convex sets in $\mathbb{R}^{d}$ is Carathéodory's theorem [Carathéodory, 1911]. It states that every point $u$ in the convex hull of a set $S \subseteq \mathbb{R}^{d}$ lies in the convex hull of a subset $F$ of $S$ of order at most $d+1$. Let $G$ be a graph and let $\mathcal{C}$ be a graph convexity on $V(G)$. The Carathéodory number of $\mathcal{C}$ is the smallest integer $c$ such that for every set $S$ of $V(G)$ and every vertex $u$ in $H_{\mathcal{C}}(S)$, there is a set $F \subseteq S$ with $|F| \leq c$ and $u \in H_{\mathcal{C}}(F)$. A set $S \subseteq V(G)$ is a Carathéodory set of $\mathcal{C}$ if the set $\partial H_{\mathcal{C}}(S)$ defined as $H_{\mathcal{C}}(S) \backslash \bigcup_{u \in S} H_{\mathcal{C}}(S \backslash\{u\})$ is not empty. This notion allows an alternative definition of the Carathéodory number of $\mathcal{C}$ as the largest cardinality of a Carathéodory set of $\mathcal{C}$. Considering $\mathcal{C}$ the $P_{3}$ convexity, in Figure 1 we have a graph $G$ and $S \subseteq V(G)$ with $S=\{a, d, f\}$. In this case $H_{\mathcal{C}}(S)=V(G) \backslash\{h\}$ and $g \in \partial H_{\mathcal{C}}(S)$. Then $S$ is a Carathéodory set of $G$.


Figure 1: Graph $G$ with a Carathéodory set of cardinality three.
The Carathéodory number was determined for several graph convexities. The Carathéodory number of the monophonic convexity of a graph $G$ is 1 if $G$ is complete and 2 otherwise [Duchet, 1988]. The Carathéodory number of the triangle path convexity of $G$ is 2 whenever $G$ has at least one edge [Changat and Mathew, 1999]. It is known that the maximum Carathéodory number of the $P_{3}$ convexity of a multipartite tournament is 3 [Parker et al., 2008]. Some general results concerning the Carathéodory number of the $P_{3}$ convexity are shown in [Barbosa et al., 2012]. On the one hand, [Barbosa et al., 2012] contains efficient algorithms to determine the Carathéodory number of the $P_{3}$ convexity of trees and, more generally, block graphs. On the other hand, it is NPhard to determine the Carathéodory number of the $P_{3}$ convexity of bipartite graphs [Barbosa et al.,

2012]. In [Dourado et al., 2013] it was determined that it is NP-hard to determine the Carathéodory number in the geodetic convexity. Lastly, [Duarte et al., 2017] showed that is NP-hard to determine the Carathéodory number of the $P_{3}$ convexity of complementary prisms and determined the Carathéodory number of complementary prims of trees.

Since a graph $G$ uniquely determines its $P_{3}$ convexity $\mathcal{C}$, we speak of a Carathéodory set of $G$ and the Carathéodory number $c(G)$ of $G$. Furthermore, we write $H_{G}(S)$ and $\partial H_{G}(S)$ instead of $H_{\mathcal{C}}(S)$ and $\partial H_{\mathcal{C}}(S)$, respectively.

In the present paper we exclusively study the Carathéodory number of $P_{3}$ convexity of some Cartesian product of graphs. We determine the Carathéodory number of the following Cartesian products: $K_{n} \square K_{m}, P_{n} \square K_{m}$, and $K_{1, n} \square K_{m}$, where $K_{m}$ is the complete graph with $m$ vertices, $K_{1, n}$ is the star with $n$ leaves and $P_{n}$ is a path with $n$ vertices. Also, we present a recursive way to construct a Carathéodory set in $T_{h} \square K_{m}$, where $T_{h}$ is a full binary tree with height $h$.

For a vertex $u$ of $G$, its neighbourhood is denoted $N_{G}(u)$ and its closed neighbourhood denoted $N_{G}[u]$ is the set $N_{G}(u) \cup\{u\}$. For a set $U$ of vertices of $G$, let $N_{G}(U)=\bigcup_{u \in U} N_{G}(u) \backslash U$ and $N_{G}[U]=N_{G}(U) \cup U$. The set $\{1,2, \ldots, n\}$ is denoted by $[n]$.

## 2. Preliminaries on Cartesian product

The Cartesian product of two graphs $G$ and $H$, denoted by $G \square H$, is the graph with vertex set $V(G \square H)=V(G) \times V(H)$ and edge set $E(G \square H)$ satisfying the following condition: $\left(u, u^{\prime}\right)\left(v, v^{\prime}\right) \in E(G \square H)$ if and only if

- either $u=v$ and $u^{\prime} v^{\prime} \in E(H)$ or
- $u^{\prime}=v^{\prime}$ and $u v \in E(G)$.

Figure 2 shows $C_{3} \square C_{5}$, the Cartesian product of cycles $C_{3}$ and $C_{5}$.


Figure 2: The Cartesian product $C_{3} \square C_{5}$.
For convenience, we refer to the subgraph of $G \square H$ induced by $V(G) \square\{y\}$ (or $V(H) \square$ $\{x\}$ ) as the $G$-layer (or $H$-layer) through $y$ (or $x$ ). We denote $V(G) \square\{y\}$ (or $V(H) \square\{x\}$ ) by $G^{y}$ (or $H^{x}$ ). The projection of $S$ onto $G$ is the set of vertices $a \in V(G)$ for which there exists a vertex $(a, v) \in S$. In Figure 3 we have the projection of a subset of vertices of $V(G \square H)$ onto $G$. Similarly, the projection of $S$ onto $H$ is the set of vertices $v \in V(H)$ for which there exists a vertex $(a, v) \in S$.

## 3. Results

We start by stating a result of [Barbosa et al., 2012] that collects several useful elementary properties of Carathéodory sets.

Proposition 1. [Barbosa et al., 2012] Let $G$ be a graph and let $S$ be a Carathéodory set of $G$.
a) $G$ has order at least 2 and is either complete, or a path, or a cycle, then $c(G)=2$.
b) If $S$ has order at least 2, then every vertex $u$ in $S$ lies on a path uvw of order 3 such that $v \in V(G) \backslash H_{G}(S \backslash\{u\})$ and $w \in H_{G}(S \backslash\{u\})$.


Figure 3: The projection onto $G$
c) No proper subset $S^{\prime}$ of $S$ satisfies $H_{G}\left(S^{\prime}\right)=V(G)$.
d) The convex hull $H_{G}(S)$ of $S$ induces a connected subgraph of $G$.

As mentioned before, in [Barbosa et al., 2012] was proved that it is NP-hard to determine the Carathéodory number of the $P_{3}$ convexity of bipartite graphs. Observe that if $G$ is a bipartite graph then $G \square K_{2}$ is also a bipartite graph. Therefore, as an immediate consequence of the result in [Barbosa et al., 2012] we can state the following result:

Corollary 2. It is NP-hard to determine the Carathéodory number of the $P_{3}$ convexity on Cartesian product of graphs.

In this section we denote $V\left(K_{m}\right)=V\left(P_{m}\right)=[m]$ and $E\left(P_{m}\right)=\{\{(i-1), i\}: 2 \leq$ $i \leq n\}$. Our next result is on the Cartesian product of two complete graphs.

Theorem 3. Consider $n, m \geq 2$ and $G=K_{n} \square K_{m}$. Then $c(G)=2$.
Proof. Let $G=K_{n} \square K_{m}$. Consider $S \subseteq K_{n}^{i}\left(S \subseteq K_{m}^{j}\right)$, for some $i \in[n](j \in[m])$ with $|S| \geq 2$ a Carathéodory set of $G$. As $H_{G}(S)=K_{n}^{i}\left(H_{G}(S)=K_{m}^{j}\right)$, any vertex $v \in H_{G}(S) \backslash S$ satisfy $v \in H_{G}(\{x, y\})$, where $x, y \in S$. So, $|S|=2$. Now, consider $S \subseteq V(G)$, such that $S \cap K_{n}^{i} \cap K_{m}^{j} \neq \emptyset \mathrm{e} S \cap K_{n}^{k} \cap K_{m}^{\ell} \neq \emptyset$, with $i \neq k$ and $j \neq \ell$. Note that, $H_{G}(S)=V(G)$ and any vertex $v \in H_{G}(S) \backslash S$ satisfy $v \in H_{G}(\{x, y\})$, where $x \in\left(K_{n}^{i} \cap K_{m}^{j}\right)$ and $y \in\left(K_{n}^{k} \cap K_{m}^{\ell}\right)$. Then the maximum cardinality of a Carathéodory set in $G$ is 2 .

The following lemma states that in the Cartesian product of $G$, a general graph with order at least two, and a complete graph $K_{m}$, each $K_{m}$-layer contains at most two vertices in some Carathéodory set.

Lemma 4. Let $G$ be a graph of order $n \geq 2$ and consider $G \square K_{m}, m \geq 2$. If $S$ is a Carathéodory set of $G \square K_{m}$, then $\left|S \cap K_{m}^{i}\right| \leq 2$, for all $i \in[n]$.

Proof. It is straightforward from Proposition 1 a).
In order to determine the Carathéodory number of $P_{n} \square K_{m}$, we first set a lower bound by showing a construction of a Carathéodory set in these graphs.

Proposition 5. Let $n, m \geq 2$ and $G=P_{n} \square K_{m}$. Then $c(G) \geq\left\lceil\frac{2 n}{3}\right\rceil$ if $n \equiv 2(\bmod 3)$ and $c(G) \geq\left\lceil\frac{2 n}{3}\right\rceil+1$, otherwise.

Proof. Let $G=P_{n} \square K_{m}$ and $X=\left\{q \in \mathbb{Z}^{+}: q \equiv 0,1(\bmod 3)\right.$ and $\left.q \leq n\right\}$. Consider $S=\{(i, 1): i \in X\} \cup\{(1,2)\}$. Note that $S$ has the enunciated cardinality. We have to show that $S$ is a Carathéodory set of $G$. First consider $n \equiv 0,1(\bmod 3)$. We will show that $(n, 2) \in \partial H_{G}(S)$. It is clear to see that $(n, 2) \notin H_{G}(S \backslash\{(1, j)\}), j=1,2$. Now, let $\left(H_{G}\right)^{i}=H_{G}(S \backslash\{(i, 1)\})$ for each $i \in X$ with $i \geq 3$. Then,

$$
\begin{gathered}
\left(H_{G}\right)^{i}=\{(k, j): k=1, \ldots, \ell \text { and } j=1, \ldots, m\} \cup \\
\{(k, 1): k=(\ell+3), \ldots, n\}
\end{gathered}
$$

where $\ell=i-2$, if $i \equiv 0(\bmod 3)$ or $\ell=i-1$, otherwise. Hence, $(n, 2) \notin\left(H_{G}\right)^{i}$, for all $i \in X$.
If $n \equiv 2(\bmod 3)$, we can see that $(n-1,2) \in \partial H_{G}(S)$ using analogous arguments.
The next result states that there cannot be two consecutive $H$-layers having empty intersection with a Carathéodory set of $P_{n} \square H$.

Lemma 6. Consider the graph $G=P_{n} \square H$ such that $H$ has order $m \geq 2$ and $S$ is a Carathéodory set of $G$. If there exist $H^{i}$ and $H^{j}$ with $j>i, H^{i} \cap S \neq \emptyset, H^{j} \cap S \neq \emptyset$, and each $H^{k}$ with $i<k<j$ has empty intersection with $S$, then $j \leq i+2$.

Proof. Suppose $S$ a Carathéodory set of $G$. Suppose that there exist $H^{i}$ and $H^{j}$ with $j>i+2$ and $H^{i} \cap S \neq \emptyset$ and $H^{j} \cap S \neq \emptyset$ and each $H^{k}$ with $i<k<j$ has empty intersection with $S$. By the construction of $P_{n} \square H$ each vertex in $H^{k}$, with $i<k<j$, has at most one neighbor in $H_{G}(S)$ and $H_{G}(S)$ induces a disconnected graph. Hence, by Proposition 1 a), $S$ is not a Carathéodory set of $G$.

The next result establishes that at most one $K_{m}$-layer of $P_{n} \square K_{m}$ may contain two vertices of a Carathéodory set.

Lemma 7. Let $G=P_{n} \square K_{m}$ and $S$ a Carathéodory set of $G$. Then, there is at most a $K_{m}$-layer, say $i$, such that $\left|S \cap K_{m}^{i}\right|=2$.

Proof. Suppose, by contradiction, that there exist two $K_{m}$-layers, say $K_{m}^{i}$ and $K_{m}^{j}$, such that $\mid S \cap$ $K_{m}^{i} \mid=2$ and $\left|S \cap K_{m}^{j}\right|=2$. Without loss of generality assume that $i<j$. Hence $\left(K_{m}^{i} \cup K_{m}^{j}\right) \subseteq$ $H_{G}(S)$. Suppose a vertex $v \notin S$ such that $v \in H_{G}(S)$. If $v \in K_{m}^{k}$ for some $k<i$, then $v \in H_{G}\left(S \backslash K_{m}^{j}\right)$ and we can conclude that $v \notin \partial H_{G}(S)$. At the same way, if $k>j$, then $v \in H_{G}\left(S \backslash K_{m}^{i}\right)$ and we can conclude that $v \notin \partial H_{G}(S)$. Then, we may assume $i \leq k \leq j$. By Lemma 6, there not exist two consecutive $K_{m}$-layers between $i$ and $j$ with empty intersection with $S$. For every vertex $v \in K_{m}^{k}, v \in H_{G}(S \backslash\{x\})$, for any $x \in\left(S \cap\left(k_{m}^{i} \cup K_{m}^{j}\right)\right)$. Therefore, $\partial H_{G}(S)=\emptyset$ and $S$ is not a Carathéodory set of $P_{n} \square K_{m}$.

If $S$ is a Carathéodory set of $P_{n} \square K_{m}$, then there are no three consecutive $K_{m}$-layers that contain some vertex in $S$.

Lemma 8. Let $n, m \geq 2, G=P_{n} \square K_{m}$ and $S$ a Carathéodory set of $G$. Let $S^{\prime}$ be the projection of $S$ onto $P_{n}$. Then for all $i \in S^{\prime},\left|N_{P_{n}}[i] \cap S^{\prime}\right| \leq 2$.

Proof. Suppose, by contradiction, that $i \in S^{\prime}$ such that $\left|N_{P_{n}}[i] \cap S^{\prime}\right|=3$ and $N_{P_{n}}(i)=\{i-$ $1, i+1\}$. If $v \in\left(K_{m}^{q} \cap H_{G}(S)\right)$ with $1 \leq q \leq i$, then $v \in H_{G}\left(S \backslash K_{m}^{i+1}\right)$. Analogously if $v \in\left(K_{m}^{q} \cap H_{G}(S)\right)$ with $i \leq q \leq n$, then $v \in H_{G}\left(S \backslash K_{m}^{i-1}\right)$. Hence, $S$ is not a Carathéodory set of $G$.

Using Lemmas 4, 7, and 8 we can establish an upper bound for the Carathéodory number of $P_{n} \square K_{m}$ and together with Proposition 5 we can determine its Carathéodory number.

Theorem 9. Let $n, m \geq 2$ and $G=P_{n} \square K_{m}$. Then $c(G)=\left\lceil\frac{2 n}{3}\right\rceil$ if $n \equiv 2(\bmod 3)$ and $c(G)=\left\lceil\frac{2 n}{3}\right\rceil+1$, otherwise.

Proof. Let $S$ be a Carathéodory set of $G$ with maximum cardinality. By Lemma 4, for any $i \in[n]$, $\left|K_{m}^{i} \cap S\right| \leq 2$. By Lemma 7, there is at most one $K_{m}$-layer with two vertices in $S$. By Lemma 8 there are no three consecutive $K_{m}$-layers that contain some vertex in $S$. Combining these previews results we have $|S| \leq\left\lceil\frac{2 n}{3}\right\rceil$ if $n \equiv 2(\bmod 3)$ and $|S| \leq\left\lceil\frac{2 n}{3}\right\rceil+1$, otherwise. Together with Proposition 5, we can conclude the proof of the statement.

In Cartesian products of complete graphs and paths the Carathéodory number grows as the path grows. Differently, in Cartesian products of star graphs $K_{1, n}$ with complete graphs we have a fixed Carathéodory number, independently of the size of $n$. Since $K_{1,2}$ is isomorphic to $P_{3}$, we consider $n \geq 3$.

Proposition 10. Let $n \geq 3, m \geq 2$ and $G=K_{1, n} \square K_{m}$. Then $c(G)=3$.
Proof. Let $V\left(K_{1, n}\right)=\{r\} \cup\{1, \ldots, n\}$, where the universal vertex is labeled by $r$, and $S=$ $\{(r, 1),(1,1),(2,2)\}$. It is easy to see that $S$ is a Carathéodory set of $G$ with $\partial H_{G}(S)=\{(1,2), \ldots$, $(1, m)\}$. Now, we will show that there is not a Carathéodory set of $G$ of size 4 in $G$.

Remember that, by Lemma 4, $\left|S \cap K_{m}^{i}\right| \leq 2$, for all $i \in([n] \cup\{r\})$. Note that, if $K_{m}^{i} \subseteq H_{G}(S)$, for some $i \in[n]$, then $1 \leq\left|K_{m}^{i} \cap S\right| \leq 2$. Furthermore, if $\left|K_{m}^{i} \cap S\right|=1$, $K_{m}^{r} \subseteq H_{G}(S)$. We have three cases related to the number of the vertices of $K_{m}^{r}$ in $S$.
Case 1: $\left|K_{m}^{r} \cap S\right|=2$.
If $K_{m}^{r} \cap S=\{(r, a),(r, b)\}$ for some $a, b \in[m]$ with $a \neq b$, then $K_{m}^{r} \subseteq H_{G}(S)$. Consider the sets $A=\{(c, k): c \in[n]$ and $k \in\{a, b\}\}$ and $B=\{(x, y): x \in[n]$ and $y \in([m] \backslash\{a, b\})\}$. So, $A \cap S=\emptyset$, in view to avoid an induced $P_{3}$ by the vertices in $S$ (by Proposition 1 c)). Any vertex $(i, j) \in A \cup B$ has a neighbor in $K_{m}^{r}$ and its other neighbors are in the same $K_{m}$-layer. Thus, if $(i, j) \in H_{G}(S) \backslash S$, it has a neighbor $(i, d)$ in $K_{m}^{i} \cap S$, for some $d \in([m] \backslash\{a, b\})$. Hence $(i, j) \in H_{G}(\{(r, a),(r, b),(i, d)\})$ and there is no vertex of $A \cup B$ that needs more than 3 vertices in $S$ to be in $H_{G}(S)$. Thus, $|B \cap S| \leq 1$. See Figure 4(a) for an illustration.

Case 2: $\left|K_{m}^{r} \cap S\right|=1$.
Let $K_{m}^{r} \cap S=\{(r, a)\}$ for some $a \in[m]$. Now, consider the sets $A=\{(c, a): c \in[n]\}$ and $B=\{(x, y): x \in[n]$ and $y \in([m] \backslash\{a\})\}$. So, $|A \cap S| \leq 1$, in view to avoid an induced $P_{3}$ in $S$. If $A \cap S=\{(i, a)\}, K_{m}^{i} \cap S=\{(i, a)\}$, i.e., there is not other vertex in the same $K_{m}$-layer of $(i, a)$ in $S$. If $(i, b) \in(B \cap S)$, then $K_{m}^{r} \subseteq H_{G}(S)$ and, similar to Case 1, at most a vertex of $B$ belongs to $S$. Thus, $c(G) \leq 3$. See Figure 4(b) for an illustration.

Case 3: $\left|K_{m}^{r} \cap S\right|=0$.
First suppose that there is a $K_{1, n}$-layer, say $a$, such that $\left|K_{1, n}^{a} \cap S\right| \geq 3$. If $S \subseteq K_{1, n}^{a}$, then $H_{G}(S)=S$ and $S$ is not a Carathéodory set of $G$. Then suppose that some $K_{1, n}^{b} \cap S \neq \emptyset$, with $a \neq b$. So, $K_{m}^{r} \subseteq H_{G}(S)$. But every vertex in $K_{m}^{r} \cap\left(H_{G}(S) \backslash S\right)$ belongs to $H_{G}(S)$ for some $S$ with at most three vertices. Any other vertex in $\left(H_{G}(S) \backslash S\right)$ must have a neighbor in $S$ in the same $K_{m}$-layer and another in $K_{m}^{r}$, then it also belongs to $H_{G}(S)$ for some $S$ with at most three vertices. If every $K_{1, n}$-layer has at most a vertex in $S, K_{m}^{r} \notin H_{G}(S)$ and $S$ is not a Carathéodory set since every vertex in $H_{G}(S) \backslash S$ needs only vertices of the same $K_{m}$-layer to belong to $H_{G}(S)$. So, we may assume that $\left|K_{1, n}^{a} \cap S\right|=2$, for some $a \in[m]$. Consider the set $B=\{(x, y): x \in[n]$ and $y \in([m] \backslash\{a\})\}$. Again, with the same argument of Case 1, we can conclude that at most a vertex of $B$ belongs to $S$. Thus, $c(G) \leq 3$. See Figure 4(c) for an illustration.

Thus, we can conclude $c(G)=3$.


Figure 4: An illustration of proof of Proposition 10. For the sake of simplicity, all edges of $K_{m}$-layers are omitted.

A full binary tree is a binary tree of height $h$ that contains exactly $2^{h+1}-1$ vertices. For a full binary tree $T_{h}$ with root $r$ and height $h \geq 1$ we denote

$$
V\left(T_{h}\right)=\{r\} \cup\left\{2^{i},\left(2^{i}+1\right) \ldots,\left(2^{i+1}-1\right), \ldots, 2^{h},\left(2^{h}+1\right), \ldots,\left(2^{h+1}-1\right)\right\}
$$

where $i$ is the distance from $r$ to the respective vertice. With this notation, vertices with label $2^{h},\left(2^{h}+1\right), \ldots,\left(2^{h+1}-1\right)$ are the leaves of $T_{h}$.

In our last result, we show how to construct a Carathéodory set in the Cartesin product of a full binary tree and a complete graph from Carathéodory sets of smaller trees. In [Barbosa et al., 2012], the authors shows that binary (sub)trees play a central role for the Carathéodory number of $P_{3}$ convexity.

Theorem 11. Let $T_{h}$ be a full binary tree with root $r$ and height $h \geq 1$. Let $G=T_{h} \square K_{m}$, with $m \geq 3$. Then there is a Carathéodory set $S$ of $G$ such that

1. $H_{G}(S)=V(G)$,
2. $K_{m}^{r} \subseteq \partial H_{G}(S)$, and
3. if $h=1$, then $|S|=3$ and $|S|=3\left(2^{h-1}\right)$, otherwise.

Proof. We prove the statement by induction on the height $h$ of $T$. If $h=1$, then it is easy to see that the set $\{(2,1),(2,2),(3,3)\}$ is a Carathéodory set of $G$ with $H_{G}(S)=V(G)$ and $K_{m}^{r} \subseteq \partial H_{G}(S)$. Hence let $h \geq 2$. Let $r_{1}$ and $r_{2}$ be the two children of $r$ in $T_{h}$. For $i \in\{1,2\}$, let $\left(T_{h-1}\right)^{i}$ be the full binary subtree of $T_{h}$ containing $r_{i}$ and all descendants of $r_{i}$. By induction there is a Carathéodory set $S_{i}$ of $G_{i}=\left(T_{h-1}\right)^{i} \square K_{m}$ such that $H_{G_{i}}(S)=V\left(G_{i}\right), K_{m}^{r_{i}} \subseteq \partial H_{G}\left(S_{i}\right)$ and $\left|S_{i}\right|=3$ if $h-1=1$ and $|S|=3\left(2^{h-2}\right)$, otherwise. Now, let $S=S_{1} \cup S_{2}$. We have $|S|=2\left(3\left(2^{h-2}\right)\right)$, which is equal $3\left(2^{h-1}\right)$. Since $T_{h} \square K_{m}$ is the graph induced by $V\left(\left(T_{h-1}\right)^{i}\right) \cup K_{m}^{r}$, and $r$ has exactly the two neighbours $r_{1}$ and $r_{2}$ in $T_{h}$, this implies that in $G=T_{h} \square K_{m}$, every vertex of $K_{m}^{r}$ has exactly one neighbor in each $H_{G_{i}}\left(S_{i}\right)$ and then $H_{G}(S)=V\left(G_{i}\right) \cup K_{m}^{r}$. Since $K_{m}^{r_{i}} \subseteq \partial H_{G_{i}}, K_{m}^{r} \subseteq \partial H_{G}(S)$ and the proof is complete. See in Figure 5 a Carathéodory set of $G=T_{2} \square K_{3}$.


Figure 5: Graph $G$, that is a Cartesian product of a full binary tree $T_{2}$ of height $h=2$ with a complete graph $K_{3}$. The black vertices are in a Carathéodory set $S$ of $G$ with cardinality $3\left(2^{h-1}\right)=6$ and $K_{3}^{r}$ is a subset of $\partial H_{G}(S)$.

## 4. Final considerations

In this work we establish the Carathéodory number for some Cartesian products in the $P_{3}$ convexity. The Cartesian product is well studied for other problems in graphs but there are few results on the Carathéodory number. Motivated by this we determine the Carathéodory number for the Cartesian product of $K_{n}, P_{n}$ and $K_{1, n}$ with $K_{m}$. Also, we present a recursive way to construct a Carathéodory set in $T_{h} \square K_{m}$, where $T_{h}$ is a full binary tree with height $h$. Some suggestions for future work are studying the Carathéodory number in the $P_{3}$ convexity for the Cartesian product of $P_{n} \square P_{m}, G \square P_{m}$ and $G \square K_{m}$ and establish limits for Cartesian product of $G \square H$ for general graphs $G$ and $H$.

## Acknowledgments

The authors were partially suported by the Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG). We would like to thank the anonymous reviewers for the very useful comments and suggestions.

## References

Barbosa, R. M., Coelho, E. M. M., Dourado, M. C., Rautenbach, D., and Szwarcfiter, J. L. (2012). On the Carathéodory number for the convexity of paths of order three. SIAM Journal on Discrete Mathematics, 26(3):929-939.

Cáceres, J., Hernando, C., Mora, M., Pelayo, I., Puertas, M., and Seara, C. (2006). On geodetic sets formed by boundary vertices. Discrete Mathematics, 306:188-198.

Carathéodory, C. (1911). Über den variabilitätsbereich der fourierschen konstanten von positiven harmonischen funktionen. Rend. Circ. Mat. Palermo, 32:193-217.

Centeno, C. C., Dourado, M. C., Penso, L. D., Rautenbach, D., and Szwarcfiter, J. L. (2011). Irreversible conversion of graphs. Theoretical Computer Science, 412(29):3693-3700.

Changat, M. and Mathew, J. (1999). On triangle path convexity in graphs. Discrete Mathematics, 206(1):91-95.

Coelho, E. M. M., Dourado, M. C., Rautenbach, D., and Szwarcfiter, J. L. (2014). The Carathéodory number of the $P_{3}$ convexity of chordal graphs. Discrete Applied Mathematics, 172:104-108.

Dourado, M. C., Protti, F., Rautenbach, D., and Szwarcfiter, J. L. (2010a). On the hull number of triangle-free graphs. SIAM Journal on Discrete Mathematics, 23(4):2163-2172.

Dourado, M. C., Protti, F., and Szwarcfiter, J. L. (2010b). Complexity results related to monophonic convexity. Discrete Applied Mathematics, 158:1269-1274.

Dourado, M. C., Rautenbach, D., Dos Santos, V. F., Schäfer, P. M., and Szwarcfiter, J. L. (2013). On the Carathéodory number of interval and graph convexities. Theoretical Computer Science, 510:127-135.

Duarte, M. A., Penso, L., Rautenbach, D., and dos Santos Souza, U. (2017). Complexity properties of complementary prisms. Journal of Combinatorial Optimization, 33(2):365-372.

Duchet, P. (1988). Convex sets in graphs, II. minimal path convexity. Journal of Combinatorial Theory, Series B, 44(3):307-316.

Erdös, P., Fried, E., Hajnal, A., and Milner, E. (1972). Some remarks on simple tournaments. Algebra Universalis, 2(1):238-245.

Everett, M. G. and Seidman, S. B. (1985). The hull number of a graph. Discrete Mathematics, 57 (3):217-223.

Farber, M. and Jamison, R. E. (1987). On local convexity in graphs. Discrete Mathematics, 66(3): 231-247.

Moon, J. (1972). Embedding tournaments in simple tournaments. Discrete Mathematics, 2(4): 389-395.

Parker, D. B., Westhoff, R. F., and Wolf, M. J. (2008). On two-path convexity in multipartite tournaments. European Journal of Combinatorics, 29(3):641-651.

Varlet, J. C. (1976). Convexity in tournaments. Bull. Societe Royale des Sciences de Liege, 45: 570-586.

