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ABSTRACT

From Carathéodory’s theorem arises the definition of the Carathéodory number for

graphs. This number is well-known for monophonic and triangle-path convexities and it has been

studied in P3 and geodetic convexities. However, in the last two there are not many results for

Cartesian product. In this paper we determine the Carathéodory number in P3 convexity of the

following Cartesian products: Kn✷Km, Pn✷Km, and K1,n✷Km, where Km is the complete

graph with m vertices, K1,n is the star with n leaves and Pn is a path with n vertices. Also, we

present a recursive way to construct a Carathéodory set in Th✷Km, where Th is a full binary tree

with height h.
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1. Introduction

Graph convexities are a well studied topic. For a finite, simple, and undirected graph G
with vertex set V (G), a graph convexity on V (G) is a collection C of subsets of V (G) such that

• ∅, V (G) ∈ C and

• C is closed under intersections.

The sets in C are called convex sets and the convex hull in C of a set S ⊆ V (G) is the

smallest set HC(S) in C containing S.

Several well known graph convexities C are defined using some set P of paths of the

underlying graph G. In this case, a subset S of V (G) is convex, that is, belongs to C, if for every

path P in P whose end vertices belong to S also every vertex of P belongs to S. When P is the

set of all shortest paths in G, this leads to the geodetic convexity [Cáceres et al., 2006; Dourado

et al., 2010a; Everett and Seidman, 1985; Farber and Jamison, 1987]. The monophonic convexity

is defined by considering as P the set of all induced paths of G [Dourado et al., 2010b; Duchet,

1988]. Similarly, if P is the set of all triangle paths in G, then C is the triangle path convexity

[Changat and Mathew, 1999]. Here we consider the P3 convexity of G, which is defined when P is

the set of all paths of length two. The P3 convexity was first considered for directed graphs [Erdös

et al., 1972; Moon, 1972; Parker et al., 2008; Varlet, 1976]. For undirected graphs, the P3 convexity

was studied in [Barbosa et al., 2012; Centeno et al., 2011; Coelho et al., 2014; Duarte et al., 2017].

A famous result about convex sets in R
d is Carathéodory’s theorem [Carathéodory,

1911]. It states that every point u in the convex hull of a set S ⊆ R
d lies in the convex hull of

a subset F of S of order at most d + 1. Let G be a graph and let C be a graph convexity on V (G).
The Carathéodory number of C is the smallest integer c such that for every set S of V (G) and every

vertex u in HC(S), there is a set F ⊆ S with |F | ≤ c and u ∈ HC(F ). A set S ⊆ V (G) is a

Carathéodory set of C if the set ∂HC(S) defined as HC(S) \
⋃

u∈S HC(S \ {u}) is not empty. This

notion allows an alternative definition of the Carathéodory number of C as the largest cardinality

of a Carathéodory set of C. Considering C the P3 convexity, in Figure 1 we have a graph G and

S ⊆ V (G) with S = {a, d, f}. In this case HC(S) = V (G) \ {h} and g ∈ ∂HC(S). Then S is a

Carathéodory set of G.

e f g h

a b c d

Figure 1: Graph G with a Carathéodory set of cardinality three.

The Carathéodory number was determined for several graph convexities. The Carathéodory

number of the monophonic convexity of a graph G is 1 if G is complete and 2 otherwise [Duchet,

1988]. The Carathéodory number of the triangle path convexity of G is 2 whenever G has at least

one edge [Changat and Mathew, 1999]. It is known that the maximum Carathéodory number of

the P3 convexity of a multipartite tournament is 3 [Parker et al., 2008]. Some general results con-

cerning the Carathéodory number of the P3 convexity are shown in [Barbosa et al., 2012]. On

the one hand, [Barbosa et al., 2012] contains efficient algorithms to determine the Carathéodory

number of the P3 convexity of trees and, more generally, block graphs. On the other hand, it is NP-

hard to determine the Carathéodory number of the P3 convexity of bipartite graphs [Barbosa et al.,
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2012]. In [Dourado et al., 2013] it was determined that it is NP-hard to determine the Carathéodory

number in the geodetic convexity. Lastly, [Duarte et al., 2017] showed that is NP-hard to deter-

mine the Carathéodory number of the P3 convexity of complementary prisms and determined the

Carathéodory number of complementary prims of trees.

Since a graph G uniquely determines its P3 convexity C, we speak of a Carathéodory set

of G and the Carathéodory number c(G) of G. Furthermore, we write HG(S) and ∂HG(S) instead

of HC(S) and ∂HC(S), respectively.

In the present paper we exclusively study the Carathéodory number of P3 convexity of

some Cartesian product of graphs. We determine the Carathéodory number of the following Carte-

sian products: Kn✷Km, Pn✷Km, and K1,n✷Km, where Km is the complete graph with m
vertices, K1,n is the star with n leaves and Pn is a path with n vertices. Also, we present a recursive

way to construct a Carathéodory set in Th✷Km, where Th is a full binary tree with height h.

For a vertex u of G, its neighbourhood is denoted NG(u) and its closed neighbourhood

denoted NG[u] is the set NG(u) ∪ {u}. For a set U of vertices of G, let NG(U) =
⋃

u∈U

NG(u) \ U

and NG[U ] = NG(U) ∪ U . The set {1, 2, . . . , n} is denoted by [n].

2. Preliminaries on Cartesian product

The Cartesian product of two graphs G and H , denoted by G✷H , is the graph with

vertex set V (G✷H) = V (G)× V (H) and edge set E(G✷H) satisfying the following condition:

(u, u′)(v, v′) ∈ E(G✷H) if and only if

• either u = v and u′v′ ∈ E(H) or

• u′ = v′ and uv ∈ E(G).

Figure 2 shows C3✷C5, the Cartesian product of cycles C3 and C5.

Figure 2: The Cartesian product C3 ✷C5.

For convenience, we refer to the subgraph of G✷H induced by V (G)✷ {y} (or V (H)✷
{x}) as the G-layer (or H-layer) through y (or x). We denote V (G)✷ {y} (or V (H)✷ {x}) by Gy

(or Hx). The projection of S onto G is the set of vertices a ∈ V (G) for which there exists a

vertex (a, v) ∈ S. In Figure 3 we have the projection of a subset of vertices of V (G✷H) onto G.

Similarly, the projection of S onto H is the set of vertices v ∈ V (H) for which there exists a vertex

(a, v) ∈ S.

3. Results

We start by stating a result of [Barbosa et al., 2012] that collects several useful elementary

properties of Carathéodory sets.

Proposition 1. [Barbosa et al., 2012] Let G be a graph and let S be a Carathéodory set of G.

a) G has order at least 2 and is either complete, or a path, or a cycle, then c(G) = 2.

b) If S has order at least 2, then every vertex u in S lies on a path uvw of order 3 such that

v ∈ V (G) \HG(S \ {u}) and w ∈ HG(S \ {u}).
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G✷H
G G3

H4

Figure 3: The projection onto G.

c) No proper subset S′ of S satisfies HG(S
′) = V (G).

d) The convex hull HG(S) of S induces a connected subgraph of G.

As mentioned before, in [Barbosa et al., 2012] was proved that it is NP-hard to determine

the Carathéodory number of the P3 convexity of bipartite graphs. Observe that if G is a bipartite

graph then G✷K2 is also a bipartite graph. Therefore, as an immediate consequence of the result

in [Barbosa et al., 2012] we can state the following result:

Corollary 2. It is NP-hard to determine the Carathéodory number of the P3 convexity on Cartesian

product of graphs.

In this section we denote V (Km) = V (Pm) = [m] and E(Pm) = {{(i − 1), i} : 2 ≤
i ≤ n}. Our next result is on the Cartesian product of two complete graphs.

Theorem 3. Consider n,m ≥ 2 and G = Kn✷Km. Then c(G) = 2.

Proof. Let G = Kn✷Km. Consider S ⊆ Ki
n (S ⊆ Kj

m), for some i ∈ [n] (j ∈ [m]) with

|S| ≥ 2 a Carathéodory set of G. As HG(S) = Ki
n (HG(S) = Kj

m), any vertex v ∈ HG(S) \ S
satisfy v ∈ HG({x, y}), where x, y ∈ S. So, |S| = 2. Now, consider S ⊆ V (G), such that

S ∩Ki
n ∩Kj

m 6= ∅ e S ∩Kk
n ∩Kℓ

m 6= ∅, with i 6= k and j 6= ℓ. Note that, HG(S) = V (G) and any

vertex v ∈ HG(S) \ S satisfy v ∈ HG({x, y}), where x ∈ (Ki
n ∩Kj

m) and y ∈ (Kk
n ∩Kℓ

m). Then

the maximum cardinality of a Carathéodory set in G is 2.

The following lemma states that in the Cartesian product of G, a general graph with order

at least two, and a complete graph Km, each Km-layer contains at most two vertices in some

Carathéodory set.

Lemma 4. Let G be a graph of order n ≥ 2 and consider G✷Km, m ≥ 2. If S is a Carathéodory

set of G✷Km, then |S ∩Ki
m| ≤ 2, for all i ∈ [n].

Proof. It is straightforward from Proposition 1 a).

In order to determine the Carathéodory number of Pn✷Km, we first set a lower bound

by showing a construction of a Carathéodory set in these graphs.

Proposition 5. Let n,m ≥ 2 and G = Pn✷Km. Then c(G) ≥ ⌈2n
3
⌉ if n ≡ 2 (mod 3) and

c(G) ≥ ⌈2n
3
⌉+ 1, otherwise.
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Proof. Let G = Pn✷Km and X = {q ∈ Z
+ : q ≡ 0, 1 (mod 3) and q ≤ n}. Consider

S = {(i, 1) : i ∈ X}∪{(1, 2)}. Note that S has the enunciated cardinality. We have to show that S
is a Carathéodory set of G. First consider n ≡ 0, 1 (mod 3). We will show that (n, 2) ∈ ∂HG(S).
It is clear to see that (n, 2) /∈ HG(S \ {(1, j)}), j = 1, 2. Now, let (HG)

i = HG(S \ {(i, 1)}) for

each i ∈ X with i ≥ 3. Then,

(HG)
i = {(k, j) : k = 1, . . . , ℓ and j = 1, . . . ,m} ∪

{(k, 1) : k = (ℓ+ 3), . . . , n},

where ℓ = i− 2, if i ≡ 0 (mod 3) or ℓ = i− 1, otherwise. Hence, (n, 2) /∈ (HG)
i, for all i ∈ X .

If n ≡ 2 (mod 3), we can see that (n−1, 2) ∈ ∂HG(S) using analogous arguments.

The next result states that there cannot be two consecutive H-layers having empty inter-

section with a Carathéodory set of Pn✷H .

Lemma 6. Consider the graph G = Pn✷H such that H has order m ≥ 2 and S is a Carathéodory

set of G. If there exist H i and Hj with j > i, H i∩S 6= ∅, Hj∩S 6= ∅, and each Hk with i < k < j
has empty intersection with S, then j ≤ i+ 2.

Proof. Suppose S a Carathéodory set of G. Suppose that there exist H i and Hj with j > i+2 and

H i ∩ S 6= ∅ and Hj ∩ S 6= ∅ and each Hk with i < k < j has empty intersection with S. By the

construction of Pn✷H each vertex in Hk, with i < k < j, has at most one neighbor in HG(S)
and HG(S) induces a disconnected graph. Hence, by Proposition 1 a), S is not a Carathéodory set

of G.

The next result establishes that at most one Km-layer of Pn✷Km may contain two ver-

tices of a Carathéodory set.

Lemma 7. Let G = Pn✷Km and S a Carathéodory set of G. Then, there is at most a Km-layer,

say i, such that |S ∩Ki
m| = 2.

Proof. Suppose, by contradiction, that there exist two Km-layers, say Ki
m and Kj

m, such that |S ∩
Ki

m| = 2 and |S ∩Kj
m| = 2. Without loss of generality assume that i < j. Hence (Ki

m ∪Kj
m) ⊆

HG(S). Suppose a vertex v /∈ S such that v ∈ HG(S). If v ∈ Kk
m for some k < i, then

v ∈ HG(S \ Kj
m) and we can conclude that v /∈ ∂HG(S). At the same way, if k > j, then

v ∈ HG(S \ Ki
m) and we can conclude that v /∈ ∂HG(S). Then, we may assume i ≤ k ≤ j.

By Lemma 6, there not exist two consecutive Km-layers between i and j with empty intersection

with S. For every vertex v ∈ Kk
m, v ∈ HG(S \ {x}), for any x ∈ (S ∩ (kim ∪Kj

m)). Therefore,

∂HG(S) = ∅ and S is not a Carathéodory set of Pn✷Km.

If S is a Carathéodory set of Pn✷Km, then there are no three consecutive Km-layers that

contain some vertex in S.

Lemma 8. Let n,m ≥ 2, G = Pn✷Km and S a Carathéodory set of G. Let S′ be the projection

of S onto Pn. Then for all i ∈ S′, |NPn
[i] ∩ S′| ≤ 2.

Proof. Suppose, by contradiction, that i ∈ S′ such that |NPn
[i] ∩ S′| = 3 and NPn

(i) = {i −
1, i + 1}. If v ∈ (Kq

m ∩ HG(S)) with 1 ≤ q ≤ i, then v ∈ HG(S \ Ki+1
m ). Analogously if

v ∈ (Kq
m ∩HG(S)) with i ≤ q ≤ n, then v ∈ HG(S \Ki−1

m ). Hence, S is not a Carathéodory set

of G.

Using Lemmas 4, 7, and 8 we can establish an upper bound for the Carathéodory number

of Pn✷Km and together with Proposition 5 we can determine its Carathéodory number.
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Theorem 9. Let n,m ≥ 2 and G = Pn✷Km. Then c(G) = ⌈2n
3
⌉ if n ≡ 2 (mod 3) and

c(G) = ⌈2n
3
⌉+ 1, otherwise.

Proof. Let S be a Carathéodory set of G with maximum cardinality. By Lemma 4, for any i ∈ [n],
|Ki

m ∩ S| ≤ 2. By Lemma 7, there is at most one Km-layer with two vertices in S. By Lemma 8

there are no three consecutive Km-layers that contain some vertex in S. Combining these previews

results we have |S| ≤ ⌈2n
3
⌉ if n ≡ 2 (mod 3) and |S| ≤ ⌈2n

3
⌉ + 1, otherwise. Together with

Proposition 5, we can conclude the proof of the statement.

In Cartesian products of complete graphs and paths the Carathéodory number grows as

the path grows. Differently, in Cartesian products of star graphs K1,n with complete graphs we

have a fixed Carathéodory number, independently of the size of n. Since K1,2 is isomorphic to P3,

we consider n ≥ 3.

Proposition 10. Let n ≥ 3, m ≥ 2 and G = K1,n✷Km. Then c(G) = 3.

Proof. Let V (K1,n) = {r} ∪ {1, . . . , n}, where the universal vertex is labeled by r, and S =
{(r, 1), (1, 1), (2, 2)}. It is easy to see that S is a Carathéodory set of G with ∂HG(S) = {(1, 2), . . .,
(1,m)}. Now, we will show that there is not a Carathéodory set of G of size 4 in G.

Remember that, by Lemma 4, |S ∩ Ki
m| ≤ 2, for all i ∈ ([n] ∪ {r}). Note that, if

Ki
m ⊆ HG(S), for some i ∈ [n], then 1 ≤ |Ki

m ∩ S| ≤ 2. Furthermore, if |Ki
m ∩ S| = 1,

Kr
m ⊆ HG(S). We have three cases related to the number of the vertices of Kr

m in S.

Case 1: |Kr
m ∩ S| = 2.

If Kr
m∩S = {(r, a), (r, b)} for some a, b ∈ [m] with a 6= b, then Kr

m ⊆ HG(S). Consider

the sets A = {(c, k) : c ∈ [n] and k ∈ {a, b}} and B = {(x, y) : x ∈ [n] and y ∈ ([m] \ {a, b})}.

So, A ∩ S = ∅, in view to avoid an induced P3 by the vertices in S (by Proposition 1 c)). Any

vertex (i, j) ∈ A∪B has a neighbor in Kr
m and its other neighbors are in the same Km-layer. Thus,

if (i, j) ∈ HG(S) \ S, it has a neighbor (i, d) in Ki
m ∩ S, for some d ∈ ([m] \ {a, b}). Hence

(i, j) ∈ HG({(r, a), (r, b), (i, d)}) and there is no vertex of A ∪ B that needs more than 3 vertices

in S to be in HG(S). Thus, |B ∩ S| ≤ 1. See Figure 4(a) for an illustration.

Case 2: |Kr
m ∩ S| = 1.

Let Kr
m ∩ S = {(r, a)} for some a ∈ [m]. Now, consider the sets A = {(c, a) : c ∈ [n]}

and B = {(x, y) : x ∈ [n] and y ∈ ([m] \ {a})}. So, |A ∩ S| ≤ 1, in view to avoid an induced P3

in S. If A ∩ S = {(i, a)}, Ki
m ∩ S = {(i, a)}, i.e., there is not other vertex in the same Km-layer

of (i, a) in S. If (i, b) ∈ (B ∩ S), then Kr
m ⊆ HG(S) and, similar to Case 1, at most a vertex of B

belongs to S. Thus, c(G) ≤ 3. See Figure 4(b) for an illustration.

Case 3: |Kr
m ∩ S| = 0.

First suppose that there is a K1,n-layer, say a, such that |Ka
1,n ∩ S| ≥ 3. If S ⊆ Ka

1,n,

then HG(S) = S and S is not a Carathéodory set of G. Then suppose that some Kb
1,n ∩ S 6= ∅,

with a 6= b. So, Kr
m ⊆ HG(S). But every vertex in Kr

m∩ (HG(S)\S) belongs to HG(S) for some

S with at most three vertices. Any other vertex in (HG(S) \ S) must have a neighbor in S in the

same Km-layer and another in Kr
m, then it also belongs to HG(S) for some S with at most three

vertices. If every K1,n-layer has at most a vertex in S, Kr
m /∈ HG(S) and S is not a Carathéodory

set since every vertex in HG(S) \S needs only vertices of the same Km-layer to belong to HG(S).
So, we may assume that |Ka

1,n ∩S| = 2, for some a ∈ [m]. Consider the set B = {(x, y) : x ∈ [n]
and y ∈ ([m] \ {a})}. Again, with the same argument of Case 1, we can conclude that at most a

vertex of B belongs to S. Thus, c(G) ≤ 3. See Figure 4(c) for an illustration.

Thus, we can conclude c(G) = 3.
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|Kr
m ∩ S| = 2

A ∩ S = ∅ |B ∩ S| ≤ 1

(a) Case 1.

|Kr
m ∩ S| = 1

|A ∩ S| ≤ 1 |B ∩ S| ≤ 1

(b) Case 2.

|Kr
m ∩ S| = 0

|A ∩ S| = 2 |B ∩ S| ≤ 1

(c) Case 3.

Figure 4: An illustration of proof of Proposition 10. For the sake of simplicity, all edges of Km-layers are

omitted.

A full binary tree is a binary tree of height h that contains exactly 2h+1 − 1 vertices. For

a full binary tree Th with root r and height h ≥ 1 we denote

V (Th) = {r} ∪ {2i, (2i + 1) . . . , (2i+1 − 1), . . . , 2h, (2h + 1), . . . , (2h+1 − 1)},

where i is the distance from r to the respective vertice. With this notation, vertices with label

2h, (2h + 1), . . . , (2h+1 − 1) are the leaves of Th.

In our last result, we show how to construct a Carathéodory set in the Cartesin product of

a full binary tree and a complete graph from Carathéodory sets of smaller trees. In [Barbosa et al.,

2012], the authors shows that binary (sub)trees play a central role for the Carathéodory number of

P3 convexity.

Theorem 11. Let Th be a full binary tree with root r and height h ≥ 1. Let G = Th✷Km, with

m ≥ 3. Then there is a Carathéodory set S of G such that

1. HG(S) = V (G),

2. Kr
m ⊆ ∂HG(S), and

3. if h = 1, then |S| = 3 and |S| = 3(2h−1), otherwise.
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Proof. We prove the statement by induction on the height h of T . If h = 1, then it is easy to see that

the set {(2, 1), (2, 2), (3, 3)} is a Carathéodory set of G with HG(S) = V (G) and Kr
m ⊆ ∂HG(S).

Hence let h ≥ 2. Let r1 and r2 be the two children of r in Th. For i ∈ {1, 2}, let (Th−1)
i be the full

binary subtree of Th containing ri and all descendants of ri. By induction there is a Carathéodory set

Si of Gi = (Th−1)
i
✷Km such that HGi

(S) = V (Gi), K
ri
m ⊆ ∂HG(Si) and |Si| = 3 if h− 1 = 1

and |S| = 3(2h−2), otherwise. Now, let S = S1 ∪ S2. We have |S| = 2(3(2h−2)), which is equal

3(2h−1). Since Th✷Km is the graph induced by V ((Th−1)
i) ∪ Kr

m, and r has exactly the two

neighbours r1 and r2 in Th, this implies that in G = Th✷Km, every vertex of Kr
m has exactly one

neighbor in each HGi
(Si) and then HG(S) = V (Gi) ∪Kr

m. Since Kri
m ⊆ ∂HGi

, Kr
m ⊆ ∂HG(S)

and the proof is complete. See in Figure 5 a Carathéodory set of G = T2✷K3.

K
4

3 K
5

3

K
r
3

K
6

3 K
7

3

K
2

3 K
3

3

Figure 5: Graph G, that is a Cartesian product of a full binary tree T2 of height h = 2 with a complete graph

K3. The black vertices are in a Carathéodory set S of G with cardinality 3(2h−1) = 6 and K
r
3 is a subset

of ∂HG(S).

4. Final considerations

In this work we establish the Carathéodory number for some Cartesian products in the

P3 convexity. The Cartesian product is well studied for other problems in graphs but there are few

results on the Carathéodory number. Motivated by this we determine the Carathéodory number for

the Cartesian product of Kn, Pn and K1,n with Km. Also, we present a recursive way to construct

a Carathéodory set in Th✷Km, where Th is a full binary tree with height h. Some suggestions for

future work are studying the Carathéodory number in the P3 convexity for the Cartesian product

of Pn✷Pm, G✷Pm and G✷Km and establish limits for Cartesian product of G✷H for general

graphs G and H .
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