
XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

A COMPARATIVE STUDY OF METAHEURISTICS APPLIED TO
TROUBLESHOOTING OPTIMIZATION PROBLEMS

Lucas Sousa de Oliveira
Instituto Tecnológico de Aeronáutica - ITA

Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP, Brasil, 12228-900
lsoliveira459@gmail.com

Leonardo Ramos Rodrigues
Instituto de Aeronáutica e Espaço - IAE

Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP, Brasil, 12228-904
leonardolrr@iae.cta.br

Takashi Yoneyama
Instituto Tecnológico de Aeronáutica - ITA

Praça Marechal Eduardo Gomes, 50, São José dos Campos, SP, Brasil, 12228-900
takashi@ita.br

ABSTRACT
Metaheuristics are powerful in that they efficiently address complex, real-life-sized prob-

lems. Many algorithms have been proposed in the last few years, each one with different features,
but few stand out. The purpose of this paper is to compare the recently proposed Teaching-Learning
Based Optimization (TLBO) with two of the most well-known methods, namely Simulated Anneal-
ing (SA) and Genetic Algorithm (GA). Numerical experiments were conducted using three different
instances of the troubleshooting optimization problem with different complexity levels. A compar-
ison among the algorithms was made in terms of convergence speed, accuracy and precision. Algo-
rithm complexity was also taken into account, in order to make the comparison useful for practical
application. A thorough analysis was made for each algorithm, considering different perspectives
of the data collected during the experiments. The final results showed that TLBO has advantages
over the others.

KEYWORDS. Metaheuristics. Troubleshooting Problems. TLBO.

Paper topics: MH - Metaheuristics; OC - Combinatorial Optimization

1783

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

1. Introduction

Metaheuristics are powerful in the way they efficiently provide good solutions for real-
world problems [Simon, 2013]. They have been successfully used when the search space is too
large, the problem is too complex, the evaluation function is too complicated, the solution is too
constrained, or there is no hint of how to solve the problem [Michalewicz and Fogel, 2004]. A
metaheuristic can be defined as a generalization of a heuristic that can be applied to a wide variety
of problems. The growing interest in metaheuristic algorithms is due to their flexibility (which
allows them to be used for a great variety of problems) and good performance (which allows them
to efficiently solve big-size instances of problems).

Metaheuristics suffer from their generality: they lack restrictions on their parameters.
Therefore, it is necessary to finely tune the parameters such that computational resources and algo-
rithm accuracy are not affected. The Genetic Algorithm (GA), for example, has a high sensitivity
to mutation probability, crossover probability and population size [Pinel et al., 2012; Srinivas et al.,
2014].

The selection of good parameters is usually done using parameter tuning or parameter
control [Eiben and Smit, 2012]. The former denotes the set of methods that define the parameters
before the optimization is run, while the latter denotes the methods in which the parameters are
dynamically defined during the execution of the optimization algorithm. Parameter control methods
can still be categorized into deterministic, adaptive, or self-adaptive.

A set of good parameters that provides good results for a specific problem is not guaran-
teed to provide good results for other problems. Parameters are usually mutually sensitive and very
dependent on the models and problems at hand. Those reasons strengthen the need for parameter
control, even though it is harder to achieve [Wolpert and Macready, 1997].

The Teaching-Learning Based Optimization (TLBO) algorithm is a novel metaheuristic
that has been recently proposed by Rao et al. [2011]. It has the population size as its unique
parameter, besides the stop criteria. TLBO is based on the teaching-learning process observed
in a classroom and simulates the influence of a teacher on the output of a group of students in a
class.

TLBO has achieved remarkable performances in different types of problems such as con-
strained [Rao and Patel, 2012], and unconstrained [Rao and Patel, 2013] optimization problems. It
has also been successfully used in combinatorial optimization problems such as the flow shop and
the job shop scheduling problems [Baykasoglu et al., 2014] and the set covering problem [Crawford
et al., 2015].

In this paper, we compare the performance of TLBO with the performance of Simulated
Annealing (SA) and Genetic Algorithm (GA) in terms of convergence speed, accuracy and preci-
sion. All the algorithms are used in their original form to provide a fair comparison.

Numerical experiments are conducted using the troubleshooting optimization problem.
Troubleshooting optimization problem is a combinatorial optimization problem which is known
to be NP-hard for most of real applications [Vomvelá, 2003]. Three troubleshooting models with
different complexity levels are used.

The remaining sections of this paper are organized as follows. Section 2 describes the
troubleshooting problem. Section 3 presents the basic principles of the metaheuristc algorithms
used. Section 4 presents the proposed metric used to compare the results. Section 5.1 presents the
results observed during the numerical experiments. Concluding remarks are presented in section 6.

1784

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

2. Troubleshooting Optimization Problems
Troubleshooting is the name given for the sequence of actions performed in order to fix

a given system. These actions are commonly separated into two categories: diagnostic and repair
[Vomvelá, 2003].

The first type of action, usually less expensive and time consuming, can be inconclusive,
i.e., represent some cost for no advancement toward an actual solution. Repair actions, on the other
hand, are a step in the direction of solving the problem. Several actions might be required to fix a
single fault, as well as several faults might have occurred simultaneously.

These types of problems are very practical and common in our daily lives. The decision-
theoretic troubleshooting comes as a way to model and study our way of making decisions to opti-
mize the troubleshooting process and thus minimize the costs involved.

A common way to represent this problem is through oriented graphs, such as the one
presented in Figure 1. Nodes represent the possible failure modes (Fi), diagnose questions (Qi)
and repair actions (Ai), while the oriented vertices represent the sequence of actions that can be
executed [Vianna et al., 2016].

Costs are represented by Ci, while cost clusters are represented by Ki. A fault caused
by failure mode Fi is only fixed when all repair actions connected to it are executed. A diagnostic
question isolates a subset of possible failure modes. Each action and question has an associated
cost, which is incurred if the action or question is executed. A cluster cost is incurred if at least one
action or question connected to it is executed.

Figure 1: Troubleshooting Model 1 - Bayesian network representing a simple troubleshooting problem.

Several assumptions need to be made to ensure optimality of the sequence found [Langseth
and Jensen, 2001]:

• Single Fault: only one fault can be present at the system at a time.

• Perfect Repair: repair actions are always effective.

• Fixed Cost: costs do not vary with time.

• No questions: diagnose actions are not allowed.

• Independent Actions: each action addresses exactly one fault.

Without these restrictions there is no polynomial approximation algorithm for such prob-
lem [Lı́n, 2014].

As mentioned earlier, every troubleshooting strategy has an associated Expected Cost of
Repair (ECR). This cost is calculated in terms of the action costs Ci, the cluster costs Ki and the
failure mode probabilities P (Fi). The ECR is defined as showed in Equation (1).

ECR(s) =
n∑

i=1

P (Fi) ·
∑
j∈lFi

C(Aj) + C(Kj)

 (1)

1785

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

where P (Fi) is the probability of occurrence of Fi, n is the number of possible failure modes,
C(Aj) with j ∈ lFi is the cost of each action (repair or diagnose) and its cluster in the path lFi , lFi

is the path to repair Fi according to the strategy s. This will be used as the objective function of the
metaheuristic optimization algorithm. Clusters are activated only once for every set of actions that
use them.

3. Metaheuristics

3.1. Teaching-Learning-Based Optimization

The TLBO algorithm is divided into two main parts: the Teacher Phase and the Student
Phase, which is also known as the Learner Phase [Rao and Patel, 2013]. During the Teacher Phase,
students learn from the teacher, while in the Learner Phase students learn through the interaction
among themselves.

There is a solution X associated with each student, which corresponds to a possible solu-
tion to the optimization problem under consideration. Also, there is a result f(X) associated with
each solution (or student), which can be obtained by evaluating the solution X using the objective
function f . In the troubleshooting problem considered in this paper, a solution X corresponds to
a troubleshooting strategy S and the associated result f(X) corresponds to its Expected Cost of
Repair, denoted by ECR(S) [Vianna et al., 2016].

3.1.1. Teacher Phase

In this phase, the algorithm simulates the learning of the students from the teacher (best
solution). During this phase, the teacher makes an effort to increase the mean result of the class.

Consider a group of n students. Let Mi be the mean solution of the students and Ti be the
teacher at iteration i. The teacher Ti will make an effort to move Mi to its own level. Knowledge
is gained based on the quality of the teacher and the quality of students in the class. The difference
Di between the solution of the teacher, XT i, and the mean solution of the students, Mi, can be
expressed according to Equation (2):

Di = ri(XT i − TF ·Mi) (2)

where ri is a random number in the range [0, 1] for iteration i and TF is a teaching factor for iteration
i, which is randomly set to either 1 or 2 according to Equation (3):

TF = round(1 + rand(0,1)) (3)

Based on the difference Di, the existing solution of student k in iteration i, Xki, with
k ∈ {1,2, . . . ,n}, is updated in the teacher phase according to Equation (4):

X?
ki = Xki +Di (4)

where X?
ki is the updated value of Xki.
If f(X?

ki) is better than f(Xki), X?
ki is accepted and replaces Xki. Otherwise, X?

ki is
discarded.

3.1.2. Student Phase

In this phase, the algorithm simulates the learning of the students through interaction with
one another. During this phase, students gain knowledge by discussing with another students who
have more knowledge [Rao and Patel, 2013].

Consider a pair of students y and z. Let Xyi and Xzi be the solutions of students y and
z at iteration i, respectively. If f(Xyi) is better than f(Xzi), the solution of student z is updated
according to Equation (5). Then, X?

zi will replace Xzi if f(X?
zi) is better than f(Xzi).

1786

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Similarly, if f(Xzi) is better than f(Xyi), the solution of student y is updated according
to Equation (6). Then, X?

yi will replace Xyi if f(X?
yi) is better than f(Xyi).

X?
zi = ri(Xyi −Xzi) (5)

X?
yi = ri(Xzi −Xyi) (6)

At the end of each iteration, the stop criteria must be checked. Different stop criteria may
be adopted. Some of the most commonly adopted stop criteria are the maximum number of itera-
tions, the maximum number of successive iterations without any improvement and the maximum
simulation time. In this paper, the maximum simulation time is adopted as the stop criterion.

3.2. Simulated Annealing

The Simulated Annealing (SA) algorithm was developed by Khachaturyan et al. [1979]
and uses the annealing process present in metallurgy to improve the traditional greedy search. Be-
sides simple, SA is very fast and can be applied to both continuous and combinatorial applications.
It is commonly used when finding a good solution fast is essential, but finding the optimal solution
is not.

The SA algorithm is mainly divided into three blocks: temperature management, neigh-
borhood generation and acceptance criteria. These blocks are briefly described in the following
lines.

3.2.1. Temperature Management

The SA algorithm has three important temperatures that must be defined: the initial tem-
perature, denoted by T0, the current temperature, denoted by Ti (where i is the current iteration),
and the final temperature, denoted by TF (where N is the maximum number of iterations).

The behavior of Ti can follow any profile desired, but it is typically chosen to be a mono-
tonic descending function. This paper uses a linear function to describe the temperature profile, as
shown in Equation (7).

Ti = (T0 − ti−1)
T0 − TF
tF

(7)

where ti−1 is the time since the beginning of the simulation until the start of the current iteration,
and tF is the expected final simulation time.

The stop criteria is also attributed to this block because when ti > tF the simulation ends.

3.2.2. Neighborhood Generation

The neighborhood generation block can assume different forms. The only requirement is
the capability of providing a solution vector slightly different from the previous one.

In the troubleshooting optimization problem considered in this paper, a candidate solu-
tion is a permutation of the available repair actions Ai and diagnostic questions Qi. Thus, new
individuals are generated by swapping the position of two elements in the original solution.

3.2.3. Acceptance Criteria

The acceptance criteria in SA governs its ability to, from time to time, accept a solution
that is worse than the previous one. In this paper, the acceptance criteria is based on the com-
monly adopted Metropolis’ Algorithm [Metropolis et al., 1953]. For minimization problems, the
probability of a solution to be accepted is defined according to Equation (8).

1787

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

PA =

1 if Ci < Ci−1

e
(Ci)−(Ci−1)

Ti if Ci > Ci−1
(8)

where Ci is the cost of the current solution, Ci−1 is the cost for the previous solution, Ti is the
temperature for the current iteration.

3.3. Genetic Algorithms

Genetic Algorithms (GA) are one of oldest class of metaheuristics and one of the first
Evolutionary Algorithms that became available. GA were introduced by Holland [1975]. Genetic
Algorithms use concepts observed in human genetics to combine, mutate and select chromosomes
until a stop criteria is met. They have been used successfully in both continuous and combinatorial
optimization, and their success is mainly attributed to their simplicity and flexibility.

The first step required by the algorithm is the definition of a way to encode the solution
vector into a chromosome, which is composed by genes. A collection of chromosomes forms the
population in the algorithm. In this paper, the chromosome is a sequence of repair actions and
diagnose questions identified by non-repeating integer numbers.

The basic algorithm proposed by Holland takes the population of chromosomes and passes
it through a series of five stages: initialization, evaluation, selection, crossover and mutation. A brief
description on each stage is presented in the following lines.

3.3.1. Initialization

The initialization stage defines a way to generate a valid initial population. In this paper,
the initial population was built randomly.

3.3.2. Evaluation

The evaluation stage is highly dependent of the problem at hand since it attributes a score
to each of the individuals in the population. It is also usually delegated to this stage the control of
the stop criteria. The objective function used in this paper is the Expected Cost of Repair (ECR)
defined in Equation (1).

3.3.3. Selection

The selection stage mimics the natural selection (or survival of the fittest) process, in
which only the strongest individuals survive. This process receives the score from the evaluation
stage in order to properly select the individuals.

There are several methods available to implement this stage. They can be classified as
deterministic, stochastic or hybrid. Deterministic methods are more well-behaved and easier to
debug. The stochastic methods mimic the natural selection process more ideally, but tend to be less
well-behaved. The hybrid approaches are usually preferred because they tend to present the benefits
of the previous methods without their disadvantages.

In this paper, we used a hybrid approach in which a few elite individuals survived between
generations while others were picked randomly. Non-elite individuals were selected based on a rank
probability, in which they are ranked according to their fitness. The probabilities assigned depend
on a given Pr. Each individual receives a probability Pi according to Equation (9).

Pi = Pr · (1− Pr)
i (9)

where i is the rank for the solution.

1788

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

3.3.4. Crossover

The crossover stage mimics the reproduction process, in which the genes from two parents
are mixed to form new individuals. This process usually takes a probability PC , also known as
crossover rate, to determine if the parents will be crossed or kept.

Several implementations are available to implement this stage. In this paper, we use the
Ordered Crossover (OX) method. The OX method starts by randomly defining two cut points.
Then, the parents are broken into three sections. A queue is then built by selecting, in this order, the
second section of the first parent, the second section of the second parent, the third section of the
second parent and the first section of the second parent. The queue is then scanned for duplicated
and they are removed leaving only the first occurrence.

3.3.5. Mutation

The mutation stage mimics the mutation process that occurs with the genes in our cells.
It allows us to evolve from one generation to another and is considered to be one of the main
reasons for the diversity of the species. The individuals in the population are mutated according to
a mutation probability PM .

4. Metric

This section presents the metric proposed to compare the performance of the different op-
timizations for solving the troubleshooting optimization problem. In each simulation, the following
outputs are recorded:

• the Estimated Cost of Repair (ECR), which indicates the quality of a given solution;

• the iteration time, which indicates the exact time it took for every iteration to run;

• the iteration count, which indicates how many iterations occurred before the current one; and

• the solutions vector for every iteration.

A simple metric, named Score and denoted by S, is proposed to evaluate the performance
of the algorithms. The computation of S for continuous and discrete problems are presented in
Equations (10) and (11), respectively.

S =

∫ tmax

0
ECRdt (10)

S ≈ −
N∑
1

(
min(ECRi,ECRi−1) +

|ECRi − ECRi−1|
2

)
· (ti − ti−1) (11)

where ECRi is the Expected Cost of Repair in iteration i, ti is the simulation time at iteration i.

5. Numerical Experiments

A limitation faced when performing such simulations was the restricted computational
time available, a restriction is often observed in commercial applications. One consequence of
this restriction is that it is not viable to sample the parameter space extensively, and so a subset
of conditions will have to be studied and the conclusions will have to be extrapolated. Design of
Experiments (DOE), which is a procedural way of analyzing some experiment, was used to define
few experiments that would help map the parameter space and help draw conclusive results.

1789

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

A simple algorithm derived from the steepest descend was used to guide the DOE through
the parameter space exploration. Each algorithm had a initial parameter setting arbitrarily chosen
according to current best practices. Full-factorial form, which uses 2k points where k is the amount
of parameters defined a Region of Interest (ROI) to be analyzed, was used since aliasing (using
2k−n) would reduce the statistical significance of the data. As an optimization algorithm itself, the
stop criterion used for the DOE was based on signal-to-noise ratio concept, where the algorithm
would stop if σ/µ > 1 for S or if 20 DOE iteration were executed.

A Monte Carlo approach was also used. The simulations conducted in this paper were
repeated 5 times for each parameter/algorithm setting. This value was empirically set in order for
the whole simulation to be completed in approximately one full day, as shown in Table 1.

Table 1: Complete simulation time estimate

TLBO SA GA
Number of Models 3

Maximum DOE Iterations 20
Input Parameters 1 2 5

DOE Experiments per Iteration 2 4 32
Fixed Simulation Time (Seconds) 10

Estimated Simulation Overhead 10 %
Estimated Time (Hours) 0.4 0.7 5.9

Total Estimated Time (Hours) 7.0
Monte Carlo Repetitions 5
Estimated Time (Hours) 1.8 3.7 29.3

Total Estimated Time (Hours) 34.8

The algorithms were implemented in Matlab R©R2016a and ran on a HP ENVY dv6-7200
CTO with Intel Core i7-3630QM CPU @ 2.40 GHz, 12 GB of RAM, Nvidia 920M GPU with 2
GB of dedicated memory and Windows 10 Pro OS.

5.1. Simulation Results

The results were measured in terms of speed, accuracy and precision, each calculated over
a dimension of the data collected here. Accuracy was measured by how far the final values were
from the best solution found between all the algorithms. Precision was measured by the standard
deviation of the value in the best experiment performed. Speed was calculated directly from the
ECR by comparing the time taken for the algorithm the 105% of the best solutions found. The best
solutions found had ECRs equal to 78.5, 199.0 and 206.3 for Models 1, 2 and 3 respectively.

5.1.1. Simulated Annealing

A initial ROI was set, as hard limits to encapsulate the ROIs, is shown in Table 2. These
values where chosen after a few experiments that indicated they would perform fairly for the prob-
lem at hand. The hard limits, values for which the ROIs would be truncated, were defined by the
simulated annealing intrinsic features.

Table 2: Initial Region of Interest and Hard Limits for the SA algorithm.

Parameters
Initial Region Hard Limits

Lower Bound Upper Bound Lower Bound Upper Bound
T0 10 50 Unconstrained Unconstrained
∆T 0 10 0 Unconstrained

1790

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Figure 2 shows an example of the simulations performed for Model 1. The results are
summarized in Table 3. These simulation were unique in that they did not reach the stop criterion
for two of the three models, which happened because the standard deviation would decrease as
much as the mean slope. The SA reached the best mean score for Model 3, even though its precision
dropped considerably. Although its score was the best for Model 3, its best solution did not reach
the 5% value above the best solution (216.6 for Model 3) to be considered fast.

-10 -5 0 5 10 15 20

Variable 1

800

900

1000

1100

1200

S
co

re

(a) Model 1, T0

0 2 4 6 8 10

Variable 2

800

850

900

950

1000

1050

1100

S
co

re
(b) Model 1, ∆T

Figure 2: Example of slopes of each ROI as the DOE seached for a better parameter set for Model 1.
Black thick lines represent the mean slope, while the red thin line represents the slope for each Monte Carlo

repetition of the ROI gradient.

Table 3: Final simulation results for SA algorithm.

Parameter
Model

1 2 3
T0 0,00 -0,02 0.10
∆T 3.54 4.67 4.80

Best Mean Score 812.67 2080.72 2245.93
Max DOE Iteration Max Max 12

Accuracy (% Worse than Best Solution) 3.5% 4.6% 8.9%
Precision (Standard Deviation as %) 0.1% 0.2% 1.0%

Speed (5% to Best, in seconds) 0.06 1.23 ≥ 10

5.1.2. Genetic Algorithm

The initial ROI and its hard limits is shown in Table 2. These values where chosen after a
few experiments that indicated they would perform fairly for the problem at hand. The hard limits,
values for which the ROIs would be truncated, were defined by the Genetic Algorithm intrinsic
features. The lower population bound, for example, was chosen because with less than 2 individuals
there would not be enough parents to crossover.

Table 4: Initial Region of Interest and Hard Limits for the GA algorithm.

Parameters
Initial Region Hard Limits

Lower Bound Upper Bound Lower Bound Upper Bound
Population Size 10 50 2 Unconstrained
Mutation Rate 10% 20% 0% 100%
Crossover Rate 10% 20% 0% 100%

Rank Probability 10% 20% 0% 100%
Proportion of Elite Individuals 50% 60% 0% 100%

1791

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

The simulation summary is presented in Table 5. GA presented the slowest, less precise
and less accurate performance among the three algorithms. Models greater than Model 1 could not
have its minimum value found in the appointed time. Its accuracy deviation increased exponentially
as the models got more complex. Its speed was also very poor, making it not able to reach the best
solution in the appointed time.

Table 5: Final simulation results for GA algorithm.

Parameter
Model

1 2 3
Population Size 217 179 134
Mutation Rate 41.35% 43.10% 41.73%
Crossover Rate 19.92% 21.15% 16.57%

Rank Probability 2.13% 0.36% 2.16%
Proportion of Elite Individuals 75.07% 74.97% 66.03%

Best Mean Score 808.4 2268.57 2895.92
Max DOE Iteration 14 13 10

Accuracy (% Worse than Best Solution) 3.0% 14.0% 40.4%
Precision (Standard Deviation as %) 0.9% 1.5% 7.3%

Speed (5% to Best, seconds) 1.6987 ≥ 10 ≥ 10

5.1.3. TLBO
The initial ROI and Hard Limit chosen for TLBO are those shown in Table 6. The lower

bound was chosen because 2 individuals because there needs to be a learner in the algorithm besides
the teacher.

Table 6: Initial Region of Interest for the TLBO algorithm

Parameters
Initial Region Hard Limits

Lower Bound Upper Bound Lower Bound Upper Bound
Population Size 2 10 2 Unconstrained

The Table 7 summarizes the results for the TLBO simulations. Its accuracy, precision and
speed equals the SA algorithm for the smaller models, but its accuracy and precision gets slightly
worse than SA for Model 3.

Table 7: Final simulation results for TLBO algorithm.

Parameter
Model

1 2 3
Population Size 11 8 2

Best Mean Score 785.22 2008.37 2297.13
Max DOE Iteration 1 1 1

Accuracy (% Worse than Best Solution) 0.0% 0.9% 11.3%
Precision (Standard Deviation as %) 0.0% 1.0% 2.2%

Speed (5% to Best, seconds) 0.03 2.46 9.25

6. Conclusion
This work was set out with the purpose of comparing metaheuristic optimization algo-

rithms to the newly proposed Teaching-Learning Based Optimization. To do so, the Troubleshoot-
ing problem was coded and simulated within a common-ground framework. This comparison was

1792

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

made pragmatically and focused on convergence speed, accuracy and precision. The algorithms
complexity was also taken into account, in order to make the comparison useful for practical appli-
cation.

All three algorithms are considered to be conceptually simple, but they allow a lot of
design choices that can complicate optimization task. GA was the method with the most choices to
be made which, summed to its highly sensitive parameter tuning, made it barely practical. SA and
TLBO presented the opposite characteristic: they seemed very practical to set. Even though SA
has one parameter more than TLBO, it was not hard to set it to a good value. One preoccupation
towards SA is that its Metropolis’ Criterion can make the algorithm perform very poorly if not
properly contained, tending to a Random Search.

TLBO was more accurate for Model 1 but quickly got worse for Model 3. SA’s was more
accurate for Model 3. The accuracy of GA got a lot worse as the model became more complex.

Although TLBO and SA present the same level of precision for small models, SA per-
formed better for Model 3. One point to note is that TLBO took very few DOE iteration to tune.
GA presented a good precision until the model became too complex.

All the algorithms studied are very fast converging. GA and SA could not compute Model
3 in time, even though SA presented the best mean score of all algorithms. TLBO was the fastest
algorithm.

Potential extensions of this work would be to allow the algorithms to explore the parame-
ter space more extensively and to compare variants of these same algorithms. One other interesting
extension would be to combine these algorithms to get the best of each. By taking a solution
quickly found by TLBO and providing it to SA to improve its precision or to GA to increase the
space exploration, the resulting algorithm could present even better performances.

References
Baykasoglu, A., Hamzadayi, A., and KÖSE, S. Y. (2014). Testing the performance of teaching

learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job
shop scheduling cases. Information Sciences, 276:204–218.

Crawford, B., Soto, R., Leiva, F. A., Johnson, F., and Paredes, F. (2015). Problema del con-
junto de cobertura resuelto mediante el algoritmo binario de optimización basado en enseñanza-
aprendizaje. In Conferência Ibérica de Sistemas e Tecnologias de Informação, p. 106–109,
Águeda. IEEE.

Eiben, A. E. and Smit, S. K. (2012). Evolutionary algorithm parameters and methods to tune them.
In Hamadi, Y., Monfroy, E., and Saubion, F., editors, Autonomous Search, p. 15–36. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI, 2 edition.

Khachaturyan, A., Semenovskaya, S., and Vainshtein, B. (1979). Statistical-thermodynamic ap-
proach to determination of structure amplitude phases. p. 519–524.

Langseth, H. and Jensen, F. V. (2001). Heuristics for two extensions of basic troubleshooting.
Frontiers in Artificial Intelligence and Applications, 66:80–89.

Lı́n, V. (2014). Decision-theoretic troubleshooting: Hardness of approximation. International Jour-
nal of Approximate Reasoning, 55(4):977–988. Special issue on the sixth European Workshop
on Probabilistic Graphical Models.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation of state
calculations by fast computing machines. J. Chem. Phys., 21:1087.

1793

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Michalewicz, Z. and Fogel, D. B. (2004). How to Solve It: Modern Heuristics. Springer, enlarged
2nd edition.

Pinel, F., Danoy, G., and Bouvry, P. (2012). Evolutionary algorithm parameter tuning with sensi-
tivity analysis. In Proceedings of the 2011 International Conference on Security and Intelligent
Information Systems (SIIS’11), p. 204–216, Berlin, Heidelberg. Springer-Verlag.

Rao, R. V. and Patel, V. (2012). An elitist teaching-learning based optimization algorithm for solv-
ing complex constrained optimization problems. International Journal of Industrial Engineering
Computations, 3:535–560.

Rao, R. V. and Patel, V. (2013). An improved teaching-learning-based optimization algorithm for
solving unconstrained optimization problems. Scientia Iranica, 20:710–720.

Rao, R. V., Vakharia, D. P., and Savsani, V. J. (2011). Teaching-learning-based optimization:a novel
method for constrained mechanical design optimization problems. Computer-Aided Design, 43:
303–315.

Simon, D. (2013). Evolutionary Optimization Algorithms. Wiley. URL https://books.
google.com.br/books?id=gwUwIEPqk30C.

Srinivas, C., Reddy, B. R., Ramji, K., and Naveen, R. (2014). Sensitivity analysis to determine the
parameters of genetic algorithm for machine layout. Procedia Materials Science, 6:866–876. 3rd
International Conference on Materials Processing and Characterisation (ICMPC 2014).

Vianna, W. O. L., Rodrigues, L. R., Yoneyama, T., and Mattos, D. I. (2016). Troubleshooting
optimization using multi-start simulated annealing. In 10th Annual IEEE Systems Conference,
Orlando, FL, USA.

Vomvelá, M. (2003). Complexity of decision-theoretic troubleshooting. International Journal of
Intelligent Systems, 18(2):267–277.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. Trans. Evol.
Comp, 1(1):67–82.

1794

