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RESUMO 

Atualmente, uma parte considerável dos processos produtivos contém dois ou mais 

estágios. Assim a qualidade final de um produto está relacionada de como possíveis erros se 

propagam nos diversos estágios. Além disso, não é raro que as variáveis de interesse desses 

processos sejam correlacionadas, de forma que um erro em uma das variáveis afeta todas as 

outras e em consequência, todo o processo é afetado. Este trabalho propõe um modelo 

multivariado para estudar a propagação dos erros entre estágios. O estudo foi realizado por meio 

de simulações, que mostrou resultados bastante promissores.  

PALAVRAS CHAVE. Processo produtivo, propagação dos erros, multivariado.  

Tópicos (4. Resultados, 2. Métodos, 5. Conclusão, 1. Introdução, 3 Metodologia). 

ABSTRACT 

Currently, a considerable part of the productive processes contains two or more stages. 

Thus, the final quality of a product is related to how possible errors propagate in the several 

stages. Moreover, it is not uncommon that the variables of interest of these processes to be 

correlated, so that an error in one of the variables affects all the others and consequently the 

whole process is affected. This work proposes a multivariate model to study the propagation of 

errors between stages where the variables are correlated. The study was carried out through 

simulations, which showed quite promising results. 

KEYWORDS. Production process, propagation of variation, multivariate. 

Paper topics (4. Results, 2. Methods, 5. Conclusion, 1. Introduction, 3. Methodology). 
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1. Introduction

The current world, globalized and competitive, it causes a constant search for quality, 

efficiency, reduction of costs and greater financial return in any organization. This set of goals 

became a basic need and crucial to the survival of companies and industries. 

A product or service can be adversely affected by variability during the manufacturing 

process or execution. This variability are deviations that represent the difference between the 

obtained result and the desired result in any process. It is also known, that a large part of the 

production processes have two or more stages, and often these stages are correlated. In this way, 

to study the propagation of errors between stages correlated can be an important contribution to 

check which process step is responsible for the greatest transmission of the variance, so that it can 

act preventively in this step.  

Generally, the analysis of a process takes into account more than one variable of 

interest. However, it is not rare to occur cases in which the variables of interest measured in each 

stage also have a high degree of correlation and techniques multivariate are needed for the 

development of models that are able to deal with transmission of the error for these cases. The 

main objective of this work is to develop a study on the propagation of errors in processes in 

stages, whose quality characteristics of interest are correlated.  

The first studies on the transmission of variance were carried out in the mid-nineties. 

This way, in 1998 there was a study of the variability in a system flexible mounting of doors of 

vehicles with the aid of the layout provided by the CAD program, and a technique in multivariate 

statistics called Principal Component Analysis, which describes the variability of the process 

through a linear transformation of the variables observed originally [Ceglarek 1998]. In 1999, it 

was proposed a model autorregressivo of order 1 (AR1) to estimate the propagation of the 

variation in stages of a production process in relation to a single variable of interest, identifying 

which step in production contributes significantly to the variability of the process [Lawless et al. 

1999]. Subsequently, it was developed a method to evaluate the propagation of variation in a 

machining process by means of a model of the state-space, based on the information of the 

product design and process, was also used the concept of a virtual operation to isolate faults and 

determine the causes of the same [Huang et al. 2002]. 

Already in 2004, was evaluated a machining process through a matrix of homogeneous 

transformation, whose elements represent the spatial difference between the two systems of 

coordinates, and had been employed a method of Analyzing Components Designated (DCA). The 

method DCA is similar to the method of Principal Components, the difference lies in the fact that 

the DCA is able to identify failures of fixation simultaneous in sheet metal and does not consider 

any kind of interaction between them and the manufacturing process [Camelio et al. 2004]. In the 

same year, was also implemented the Six Sigma methodology in a production process of 

automobiles, with the aim of reducing the deviations generated. For this, it was analyzed the 

clearance present in the rear doors of 17 vehicles in two stages of manufacture, plating and 

assembly [Gaio e Sá 2004].   

In the following year, [Liao and Wang, 2005] developed a new method from the fractal 

geometry, which characterizes phenomena, spatial or temporal of the continuous bodies, and the 

use of the method of finite elements, with the objective of analyzing the variation in the surface 

micro-geometric of the components of these bodies. The fractal geometry has been expressed by 

a function called the Weierstrass-Mandelbrot, able to represent the characteristics of the surface 

micro geometry of the parts used in the assembly process. The finite element method was used to 

analyze the deformation of the components of the production system. This variation deserves 

attention in processes of assembly of high precision. Subsequently, [Zhang et al. 2007] presented 

the methodology of the flow variation based on the description of the project (CAD) and in the 

process. This methodology uses the modeling of the space-state (linear and that establishes the 

relationship between the errors and their causes), sensitivity analysis to verify the degree of 

impact of deviations on the quality of the automotive cylinders, and establish the 

optimization 
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process in order to minimize them. The study of the decomposition of the error assists the 

engineers to identify which stage contributes most to the variability of the process.  

In 2012, was conducted a study aiming to the minimization of the propagation of 

variances. The idea was to evaluate stage by stage of the process by minimizing the sum squared 

of the variations in all the phases [Yang et al. 2012]. In the following year it was proposed a 

model of quality forecast (CQPM), able to deal with complex variables present in multi-stage 

manufacturing, through to technical data such as Principal Components (ACP), which extracts 

information from several variables interrelated and transform them in a new set of variables 

orthogonal [Arif et al. 2013].  

The proposed paper is organized in 5 sections. In section 2, are discussed the main 

concepts and definitions of tools of Multivariate Statistics and the Model used. Section 3 

describes the methodology applied in the simulations. The fourth section presents the analysis of 

the results. Finally, the fifth section contains the conclusion of the work.  

2. Methods

2.1 Autoregressive Model Propagation 

In 1999, [Lawless et. al, 1999], have proposed an autoregressive model (AR (1)) to 

study the transmission of variation in processes of multiple stages. The choice of this model is 

justified since we wished to study the influence of the variance between the subsequent steps. In 

this way, the following equation illustrates the model AR (1):  

𝑌𝑖 =  𝛼𝑖 +  𝛽𝑖𝑌𝑖−1 + 𝜀𝑖  𝑖 = 2, … , 𝑘 (1) 

where 𝑌𝑖 is the variable that represents the measurement observed in step 𝑖 and 𝑌𝑖-1 is the 

observed measure in the step immediately preceding. Besides 𝑌𝑖 follows a Normal distribution 

with mean µi and variance σi
2
. The terms αi and βi represent, respectively the linear and angular

coefficients of the model. The waste εi´s represent the random errors and also follow a Normal 

distribution with mean 0 and constant variance σε
2
. In addition, it is assumed that the errors and

Yi have covariance equal to zero, that is, they are independent. 

The main attribute of the models AR (1) is that the current value is strongly related to 

the immediately preceding, that is, there is a correlation in the first lag, between Yi and Y(i-1). This 

contributes to the fact that the errors can be obtained in each lag considered. 

 Thus, the variability that is transmitted between two stages is established by the 

following equation: 

𝜎𝑖
2 =  𝛽𝑖

2𝜎𝑖−1
2 +  𝜎𝑖,𝐴

2  (2) 

where 𝜎𝑖
2 is the total variance of step i; 𝜎𝑖,𝐴

2 is the variance added in the current step; 𝜎𝑖−1
2  is the 

variance in the previous step; 𝛽𝑖
2 is the coefficient responsible for the transmission of the

variability between the two stages.  

If we have k steps, the equation (2) can still be generalized by the following expression: 

𝜎𝑘
2 = 𝛽𝑘

2𝜎𝑘−1,𝐴
2 + ⋯ + 𝛽𝑘

2𝛽𝑘−1
2 … 𝛽2

2𝜎1
2 + 𝜎𝑘,𝐴

2

(

(3) 

2.2 Principal Components analysis 

Principal Components analysis (PCA) is a multivariate technique, in which a number of 

related variables is transformed into a smaller set of variables not correlated, called Principal 

Components (CP). In this method are generated as many components as variables, but the large 

advantage of the technique is that, in general, few components explain most of the variability of 
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the set of original variables. Thus, if p components represent the total variability of a set of p 

original variables, the greater part of this variability can be explained by k components (k<p). 

Soon, k components replace the p variables initials, reducing the size of the data set. In addition, 

the first CP is a linear combination with variance maximum. 

So is X a vector random vector of averages µ and the matrix of covariance or correlation, ΣpXp, 

with λi eigenvalues and ei the eigenvectors (normalized) that obey the conditions: ei’ ej = 0 (i≠j); 

ei’ ei = 1 (for all i) and ΣpXp ei = λi ei (for all i). Soon, the j-th principal component is given by the 

following:  

𝑌𝑗 =  𝑒𝑗
′ 𝑋 =  𝑒𝑗1 𝑋1 +  𝑒𝑗2𝑋2 + ⋯ + 𝑒𝑗𝑝𝑋𝑝 (4) 

The Figure 1 below depicts a scheme of how it works the method. 

Figure 1: Scheme of operation of the method PCA. 

In general, it is observed that a large part of the variability of the original variables is 

explained by a few principal components. Thus, we can say that if more than 80% of the total 

variance can be explained by two or three components, then these components can replace the 

original variables without loss of information [Johnson and Wichern 2007]. 

2.3 Autoregressive Model in the Principals Components 

The autoregressive model of order one, described in the previous section, will serve as 

the basis for the determination of the autoregressive model in the principals components. In this 

way, the main component of stage i can be modeled as a function of the main component from 

the previous step (i-1), as can be seen in the following equation:  

Applying the variance in the i-th principal component, we have: 

By analogy, all of the assumptions and definitions applied to the model autorregressivo 

given by the equation (1) are still valid for the equation (5). Thus, the terms αi and βi  are the 

linear and angular coefficients of the model and the terms εi´s  are the residuals. It is also 

considered that the residuals and the CPs are independent. In practice, the terms of equations (5) 

and (6) can be estimated by means of equations (7) to (11), which respectively represent 

the 

 

𝐶𝑃𝑖 =  𝛼𝑖 + 𝛽𝑖𝐶𝑃𝑖−1 + 𝜀𝑖     (5) 

𝑉𝑎𝑟(𝐶𝑃𝑖) =  𝜎𝑖
2 =  𝛽𝑖

2𝜎𝑖−1
2 +  𝜎𝑖,𝐴

2 (6)
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estimators of the covariance of the CPs between the stages, the variance of the CPs, the angular 

and linear coefficients, and the variance added in the own stage.  

𝑆𝑖−1,𝑖 =
∑ (𝐶𝑃𝑗,𝑖−1−𝐶𝑃̅̅ ̅̅ 𝑖−1)𝑛

𝑗=1 (𝐶𝑃𝑗,𝑖−𝐶𝑃̅̅ ̅̅ 𝑖)

𝑛

(

  (7) 

And the variance is given by the equation (8): 

𝑆
𝑖𝑖= 

∑ (𝐶𝑃𝑗,𝑖−𝐶𝑃̅̅ ̅̅ 𝑖)²𝑛
𝑗=1

𝑛

 

(

  (8) 

The parameter of spread is calculated using the equation (9). 

𝛽𝑖 =  
𝑆𝑖−1,𝑖

𝑆𝑖−1,𝑖−1

(

  (9) 

The linear coefficient and the variance added between steps are obtained by the 

equations (10) and (11), respectively. 

𝛼𝑖 =  𝐶𝑃̅̅̅̅
𝑖 − 𝛽𝑖𝐶𝑃̅̅̅̅

𝑖−1    i=2,...,k

(

(10) 

𝜎𝑖,𝐴
2 = 𝑆𝑖𝑖 −  𝛽𝑖(𝑆𝑖−1,𝑖)   i=2,...,k

(

(11) 

3. Methodology

In this topic, is presented the methodology used in a study of the simulation. In this 

way, the idea is to simulate a production process formed by two stages, where each stage is 

composed of four variables as shown in the Figure 2, in which the same are correlated on 

different levels. Thus, for each stage were generated 100 samples of these four variables, all 

following a normal distribution with mean zero and variance 1.  

It was also considered three types of correlation between the variables, namely: strong, 

moderate and weak, and three other types of relationships between the stages, as can be seen in 

Figure 3. Thus, for the first simulation, Figure 3, is assumed that the variables in each stage are 

strongly correlated with each other, considering also three types of correlation between the 

stages. For the second and third simulation the same routine is followed. 

Figure 2: representation of variables in stages. 

1137



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Figure 3: Schematic of the simulated cases considering strongly correlated variables in each 

stage. 

From each group of variables at each stage were generated principal components, 

selecting the component that best explains the variability of the original variables. Then, it is 

applied the proposed model between the components of each stage, where the component of the 

second stage is regressed in the function of the component of the first stage, as shown in Figure 4. 

Figure 4: representation of the principals components in stages. 

4. Results

In this section, the results are presented related to the study of the simulation described 

in section 3.  

4.1 Results of Simulation 1 

After you have obtained the variables strongly correlated in each stage according to the 

methodology, we have obtained the principals components for the first and the second stages, 

considering the three relationships between the stages. The Tables 1 and 2 show the variances 

explained by the principal components in stage 1 and stage 2, respectively.  

Table 1: Percentage of variance explained by the CPs simulation 1 Stage 1. 

% CP1 % CP2 % CP3 %CP4 

99.10% 0.50% 0.30% 0.10% 

The values relating to the proportions of the main components in each case in the stage 

2 are shown in Table 2.  

Table 2: Percentage of variance explained by the CPs simulation 1 Stage 2. 

Case  % CP1 % CP2 % CP3 %CP4 

1 (90%) 98.90% 0.60% 0.40% 0.10% 

2 (50%) 96.70% 1.70% 1.30% 0.30% 

3 (30%) 91.80% 4.20% 3.20% 0.80% 

• Variables
strongly 

correlated

Stage 1

• 90%

• 50%

• 30%

Relationships between 
the stages 

• Variables
strongly 

correlated

Stage 2

Stage 1 

CP11,CP21, 

CP31,CP41

Stage 2 

CP12,CP22, 

CP32,CP42
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Analyzing Tables 1 and 2, it is noted that when the variables originally generated are 

strongly correlated the first principals components of each stage are responsible for almost the 

entire variability of the original variables. In this way, we applied the proposed model 

considering the first components in each stage. Figures 5, 6 and 7 show how the variance 

propagates between stages.  

Figure 5: Variability between stages Simulation 1 case 1. 

Figure 6: Variability between stages Simulation 1 case 2. 

Figure 7: Variability between stages Simulation 1 case 3. 

100% 98,17% 

1,83% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 1 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟖𝟖𝟖𝟏∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟗𝟎𝟑 

100% 94,54% 

5,46% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 2 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟒𝟗𝟎𝟏∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟖𝟔 

100% 
86,04% 

13,96% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 3 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟐𝟗𝟏𝟒∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟖𝟑 
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Figure 5 reveals that 98,17% of the variability, present in the stage 2, has been 

originated in the previous stage. This means that an error in the previous stage, is almost entirely 

propagated to the next step. Still, it is possible to see by means of the Figures 6 and 7 that as the 

relationship between the stages decreases, it decreases the transmission of the error.  

4.2 Results of Simulation 2 

The variances explained by the principals components in stage 1 for simulation 2, are 

presented in Table 3. Still,  the Table 4 presents the values of the variances explained in the stage 

2 at each level of the correlation between the stages.  

Table 3: Percentage of Variance explained by the CPs simulation 2 Stage 1. 

% CP1 % CP2 % CP3 %CP4 

96.60% 1.50% 1.40% 0.50% 

Table 4: Percentage of Variance explained by the CPs simulation 2 Stage 2. 

Note that, although the variables in the stages are moderately correlated, the firsts 

principals components are still capable of a high degree of explanation, even for the worst case, 

where the relationship between the stages is only 30%. Figures 8, 9 and 10 show the propagation 

of errors between the two stages in terms of the first principal component, since it represents the 

largest part of the variability of the variables.  

Figure 8: Variability between stages Simulation 2 case 1. 

From Figure 8, it is observed that the propagation of the variability between steps was 

97,44% for the case 1 of the simulation 2 and Figure 9 shows that in the second stage, 93,63% of 

the variance was derived from the previous stage and only 6,37% of the errors were generated in 

the own stage 2. For the correlation between stages of 30%, has that 15,04% of the deviations 

present in the second stage were generated by the same, as shown in Figure 10.  

 

100% 97,44% 

2,56% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 1 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟗𝟎𝟎𝟓∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟒𝟏

Case  % CP1 % CP2 % CP3 %CP4 

1 (90%) 95.60% 2.20% 1.70% 0.50% 

2 (50%) 87.90% 5.90% 4.80% 1.40% 

3 (30%) 75.00% 11.70% 9.90% 3.40% 
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Figure 9: Variability between stages Simulation 2 case 2. 

Figure 10: Variability between stages Simulation 2 case 3. 

4.3 Results of Simulation 3 

With the principal components analysis, we obtained the values of variability, 

maximum and minimum provided by the principals components in stage 1, according to Table 5.  

Table 5: Percentage of Variance explained by the CPs simulation 3 Stage 1. 

% CP1 % CP2 % CP3 %CP4 

66.70% 19.20% 10.60% 3.50% 

The Table 6 gives the values of the variability explained by each principal component 

in stage 2 in each situation.  

Table 6: Percentage of Variance explained by the CPs simulation 3 Stage 2. 

Case  % CP1 % CP2 % CP3 %CP4 

1 (90%) 64.90% 17.90% 12.50% 4.70% 

2 (50%) 49.50% 23.40% 17.60% 9.50% 

3 (30%) 40.80% 26.00% 19.60% 13.60% 

100% 
93,63% 

6,37% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 2 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟒𝟗𝟗𝟐∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟒𝟗 

100% 
84,96% 

15,04% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 3 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟐𝟗𝟗𝟕∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟓𝟒 
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Analyzing the Figure 11 it is observed that the propagation of errors between the stages 

was 95,10%. In addition, Figure 12 shows that the variance transmission between the stages was 

of 88,55% of the first component in the case 2 of simulation 3 and in case 3 (Figure 13) 

propagation of variances was even smaller, about 75%.  

Figure 11: Variability between stages Simulation 3 case 1. 

Figure 12: Variability between stages Simulation 3 case 2. 

Figure 13: Variability between stages Simulation 3 case 3. 

100% 95,10% 

4,90% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 1 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟖𝟕𝟔𝟖∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟓𝟔 

100% 
88,55% 

11,45% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 2 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐 = 𝟎.𝟓𝟎𝟕𝟓∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟒𝟏 

100% 

74,99% 

25,01% 

PROPAGATION OF THE VARIATION 

BETWEEN THE STAGES - CASE 3 

Stage 2

Stage 1

𝑪𝑷𝟏𝟐= 𝟎.𝟑𝟎𝟕𝟓∗𝑪𝑷𝟏𝟏−𝟎.𝟎𝟎𝟑𝟏 
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5. Conclusion

After analyzing the cases simulated, it is concluded that the autoregressive model in the 

Principal Components was able to capture the variation coming from the previous stage, showing 

promise for application in real cases. In addition, it was observed that the higher the correlation 

between the data, the greater the ability of the proposed model in reducing the number of 

variables, due to the high percentage of variance explained by the principals components, in 

particular for the first component. In consequence, the greater will be the model's capacity to 

predict the transmission of deviations between stages.  

In summary, it can be inferred that the models autoregressivos in the Principals 

Components are valid to evaluate the behavior of the propagation of errors in cases with large or 

small volume of data. Through them, it is possible to identify which stage is responsible for the 

major variability of the process.  
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