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RESUMO
Este artigo apresenta uma técnica hı́brida para resolver o problema de agendamento

de máquinas geradoras de energia coordenadas com despacho hidrotérmico baseados no algoritmo
genético Chu-Beasley e programação linear. O modelo matemático proposto foi executado e a me-
lhor solução apresentou um custo 10.72% menor que o plano base. Um conjunto de 80 soluções
foi utilizado para a tomada de decisão. Os métodos multicritério AHP e TOPSIS foram utilizados
considerando os critérios Custo, Racionamento e Distância para cinco diferentes cenários, do pes-
simista ao otimista. Uma ordenação final foi obtida e as alternativas foram analisadas. O modelo
matemático e as estratégias para tomada de decisão podem auxiliar acadêmicos e praticantes neste
campo de pesquisa.

PALAVRAS CHAVE. Otimização em sistemas elétricos, Planejamento de manutenção de
unidades geradoras de energia, Tomada de Decisão Multicritério com Incertezas.

MH – Metaheuristicas, EN – PO na Área de Energia, ADM – Apoio à Decisão Multicritério

ABSTRACT

1993



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

This paper presents a hybrid technique for solving the generation maintenance schedul-
ing problem coordinated with hydrothermal dispatch based on the Chu-Beasley genetic algorithm
and linear programming. The mathematical model proposed was ran and the better solution had a
cost 10.72% lower than the base plan. A set of 80 solutions was used for decision making. The
multicriteria methods AHP and TOPSIS were used considering the criteria Cost, Rationing and
Distance for five different scenarios, from pessimistic to optimistic. A final order was obtained and
the alternatives were analyzed. The mathematical model and the strategies for decision making may
help academics and practitioners in this field of research.

KEYWORDS. Optimization in electrical systems. Generation Maintenance Scheduling. Mul-
ticriteria Decision Making with Uncertainties.

MH - Metaheuristics, EN - OR in Energy, ADM - Multicriteria Decision Support
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Nomenclature
The notation used throughout this paper is reproduced below for quick reference.

Parameters
t: Number of periods
nch: Number of hydro plants
nt: Number of thermal plants
fp: Final period of planning term
cr: Penalty cost for non supplied electricity
csj : Cost of water spillage at period j
vi,0: Volume of hydroplant i at period 0
vfi: Final reservoir storage of hydro plant i
gti: Maximum limit of power at thermal plant i
ai,j : Water inflow of hydro plant i at period j
dj : Load demand at period j
ghi: Maximum limit power of hydro plant i
gui: Maximum power generation of unit i
ui, ui: Maximum and minimum limit of water discharge at hydro plant i
vi, vi: Maximum and minimum limit of volume at hydro plant i
ftoi: Water discharge constant of hydro plant i
vi,0: Initial volume of hydroplant i
ci, ci: Maximum and minimum operating cost at generation i
s, s: Maximum and minimum water spillage among initial population
npop: Population size
nmut: Mutation rate
ntor: Number of tournaments
ncand: Number of candidates to tournament
gen: Number of generations
α, β: Rationing and spillage weighting factor

Variables
grj : non served power at period j
si,j : Water spillage of hydro plant i at period j
ghi,j : Hydro generation of plant i at period j
gti,j : Thermal generation of plant i at period j
gui,j : Power generation of unit i at period j
vi,j , ui,j : Volume and water discharge of the hydro plant i at period j
ri,j , si,j : Rationing and water spillage of spring i at generation j
ci,j : Operating cost of spring i at generation j
ffit: Fitness function of the genetic algorithm
γi,j : Infeaseability equalization factor
I: Normalized infeasibility

1. Introduction
The Generation Maintenance Scheduling Problem (GMSP) deals with a combination of

different maintenance plans for the generation units. It determines when the units should be taken
offline for preventive maintenance. The Hydrothermal Dispatch (HTD) seeks to determine the
use of water and fuel resources for hydro and thermal electricity generation. The interconnection
between these two problems (GMSP and HTD) searches for determining the operating levels of
the system, optimizing the water sources available while complying with electricity demand and
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minimizing cost. At the same time pursues assuring the system reliability and security of the power
system. Uncertainty regarding future events troubles the maintenance scheduling analysis. Decision
making, in this case, takes only into account the variables modeled in the problem, but it does not
measure the probability of different scenarios.

The unit maintenance scheduling has been tackled by several authors in the literature.
Many different types of formulations were proposed, Due to the features of the problem they com-
monly applied Genetic Algorithms (GA) to solved it [Wang and Edmund Handschin, 1999; Bisht,
2012; Samuel and Rajan, 2012; Martı́nez et al., 2014].

At the end of the optimization process an approximated Pareto set of solutions is given to
the decision maker (DM). If the DM considers just the lowest cost criterion, the solution with the
lowest value will be the choice. However, in real-life problems, this hardly happens. Commonly,
the DM faces a more complex situation: a set of feasible solutions with different values to the
criteria implemented. Moreover, the uncertainties regarding the future events make the problem
more difficult to solve. One of the approaches available to deal with uncertainty and minimizing the
impact of the future events is the modeling of uncertainty through multicriteria analysis [Durbach
and Stewart, 2012b].

According to Hashemkhani Zolfani et al. [2016], multicriteria decision making consider-
ing scenarios is in the focus of the data analysts and experts. This approach allows to evaluate how
uncertainties about future topics can affect the decision making process. The scenario analysis is
one of five different types of modeling uncertainties provided by Durbach and Stewart [2012b]. In
this case, a set of solutions of an optimization problem is exposed to different variations of parame-
ters, one or various multicriteria decision making methods are applied and subsequently, a ranking
of alternatives is obtained.

In this work, we proposed a hybrid solution for the generation maintenance scheduling
problem based on a metaheuristic that combines a specialized GA based on the Chu-Beasley work
[Chu and Beasley, 1997] and linear programming. A set of solutions was obtained from the opti-
mization model. This set of solutions was subject to variations of scenarios in water inflows and
demand. Three criteria were taking into account in the multricriteria decision process. They are
cost, rationing and distance to the base plan. With the rankings obtained by the MCDM methods,
we sought to aggregate the alternatives to obtain a final ordering that reflected the preferences of
the DM regarding the multicriteria methods and the scenarios analyzed.

The paper is organized as follows: Section 2 contextualizes the generation maintenance
scheduling problem combined with hydrothermal dispatch and presents and discusses the genetic
algorithm used and the mathematical formulated proposed. Section 3 provides a briefly presenta-
tion about the MCDM methods, especially AHP and TOPSIS, and their application based scenarios.
Section 4 describes the research methodology and the procedure of this study. Section 5 presents
and discusses the results. Finally, Section 6 presents conclusion, limitations and recommendations
for future studies.

2. Generation Maintenance Scheduling Coordinated with Hydrothermal Dispatch
The generation maintenance scheduling problem is a complex combinatorial problem

studied since early 70s throughout exact methods and heuristics. Traditionally, in hydrothermal
systems preventive maintenance must be performed on a number of power units within a fixed
planning term, while minimizing cost and providing the power capacity to comply with expected
demand. This problem has different approaches depending on whether the power system is open or
centralized. In both cases, genetic algorithms (GA) have been applied to find solutions [Wang and
Edmund Handschin, 1999].

Hydrothermal dispatch, also known as scheduling, coordination or planning, is the prob-
lem of determining the use of water and fuel resources in hydro and thermal plants respectively
in order to minimize the operating thermal cost while fulfilling demand and operating constraints.
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This problem is massively constrained with a large number of variables [Wang and Edmund Hand-
schin, 1999; Jimenez and Paucar, 2007; Martı́nez et al., 2014]. It is stochastic typed derived from
the uncertainty in demand, fuel cost and water inflows. Just the IEEE Explore data base reports
more than 400 papers addressing HTD since 1954, most of them contributions of Brazilian authors.
Several and diverse techniques have been proposed in the literature to find solutions to this problem.
Again, genetic algorithms are used in many papers of the list.

2.1. Genetic Algorithm of Chu-Beasley
In this work, we are solving hydrothermal dispatch and generation maintenance schedul-

ing in a coordinated way by using a GA based on the work presented by Chu and Beasley [Chu and
Beasley, 1997]. These two authors developed a genetic algorithm, meant for the generalized as-
signment problem (GAS), but successfully applied in transmission expansion planning [Silva et al.,
2006]. We adapted their technique to the GMSP. The steps involved in our adapted version of the
Chu-Beasley GA are as follows:

1. Generate an initial population of N solutions. Part of the solutions are randomly generated,
another part are heuristics built on the knowledge of hydrothermal systems.

2. Check diversity. In this algorithm all individuals must be different in each generation, so it is
the offspring that enters the population.

3. Decode the solution to obtain the fitness value, which is based on the cost and the degree of
infeasibility. That includes the spillage and the unserved power cost.

ffit = cop + γ ∗ I (1)

γ =
cop − cop
I − I

(2)

The numerator in (2) represents the difference between the maximum and the minimum op-
erating cost. Meanwhile, the denominator is computed as the difference between the extreme
values (maximum and minimum) of the normalized infeasibility. All values are related to the
initial population. The normalized infeasibility is calculated by I = α(r/r) + β(s/s)

4. Select the parents for reproduction in a tournament selection method.

5. Generate a child solution by applying one-point crossover operator. The crossover point is
selected randomly.

6. According to the mutation rate, accomplish mutation.

7. An individual of the population will be replaced by the offspring in the following cases: a)
The offspring is infeasible. If its degree of infeasibility is lower than the most infeasible of the
current population and it complies diversity. b) The offspring is feasible. If its cost is lower
than the cost of all individuals in the current population and it complies diversity. Otherwise,
the algorithm steps forward to the next generation without accomplishing replacement.

2.2. Mathematical Modeling
The solution is divided in two stages: Firstly the genetic algorithm that solves the mainte-

nance scheduling. Secondly the linear programming optimization part that solves the HTD problem.
The genetic algorithm generates the miantenance scheduling proposals. Each proposal is evalutated
in terms of the cost, rationing and spillage by the linear technique.
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In order to keep the HTD model linear, the following strategy was adopted: Instead of
considering the binary variables that represent the units maintenance outages, this work subtracts
the power capacity of the unit to be maintained from the total capacity of its respective power plant.

Consequently, the mathematical model is an LP (Linear Programming) typed. It searches
for the optimal maintenance scheduling that minimizes the cost function that comprises three terms:
operating cost of thermal generation, rationing cost and spillage cost. Consequently, the model
does not include the cost associated to the maintenance task and optimizes the energy resources
available. The reason is that we are solving the problem from the point of view of the Integrated
System Operator in assuming a centralized electric scheme.

This model is an extension of previous works on HTD [Bisht, 2012; Jimenez and Paucar,
2007; Martı́nez et al., 2014] and GMSP. This model considers linear operating costs for thermal
generation. It is subjected to constraints related to: the manpower availability to carry out the main-
tenance task specifies that no two units can be simultaneously maintained by the same crew at the
same power plant; that no more than tree units can be simultaneously maintained by different crews
(crew constraints); completion of maintenance operation guarantees that the maintenance for each
unit must occupy the required time duration without interruption (maintenance completion con-
straint) [Samuel and Rajan, 2012] all maintenance schedules generated by the GA comply with the
previous constraints. The HTD model evaluates the maintenance schedules and has the following
constraints: energy balance, water balance, maximum thermal and hydro generation, productivity
of the hydro plants maximum and minimum limits of water discharge for the hydro plant maxi-
mum and minimum volume limits for the water reservoirs and minimum energy storage; finally the
variables are defined.

min
nt∑
i=1

t∑
j=1

costij .gi,j + α
t∑

j=1

crj .grj + β
nh∑
i=1

t∑
j=1

cs.si,j

subject to

nch∑
i=1

ghi,j +
nct∑
i=1

gti,j + grj = dj ; j = 1..t

vi,j = vi,j−1 + ai,j − ui,j − vvi,j ; i = 1..nh, j = 1..t

ghi ≤ ghi,j ≤ ghi; i = 1..nh, j = 1..t

gti ≤ gti,j ≤ gti; i = 1..nt, j = 1..t

ghi,j = ftoi.ui,j ; i = 1..nh, j = 1..t

ui ≤ ui,j ≤ ui; i = 1..nh, j = 1..t

vi ≤ vi,j ≤ vi; i = 1..nh, , j = 1..t

vi,fp = vfi; i = 1..nch

ghi,j , gti,j , ui,j , vi,j , si,j ∈ R+

3. Multicriteria Decision Making Methods
Multicriteria decision making methods aims to choose the best alternative according to

established criteria [Saaty, 2008; Opricovic and Tzeng, 2004]. These methods have been used in
a variety of research fields, including power management, renewable energy and power systems
[Yamamoto et al., 2001; Lin et al., 2006; Mardani et al., 2015].

Several MCDM methods are available in the literature [Mardani et al., 2015]. Their ap-
plication in many fields of research help in selecting the best alternatives based on decision-makers
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preferences. Mardani et al. [2015] reviewed systematically MCDM techniques and approaches
from 2000 to 2014. The methods were grouped into 15 fields. Energy was ranked as one of the top
three areas that have applied MCDM techniques and approaches.

Moreover, Mardani et al. [2015] explored the wide variety of applications of those meth-
ods in the various fields of research. Note also that aggregation DM methods have a large number of
applications. This line of research about the future is in the focus on the data experts and decision-
makers [Hashemkhani Zolfani et al., 2016]. Furthermore, Durbach and Stewart [2012b] emphasized
that one of the most important issues in integrating the use of scenarios combined with multicriteria
analysis is how to compare and aggregate results from different scenarios.

3.1. AHP Method
The Analytic Hierarchy Process (AHP) was created in 80’s by Thomas L. Saaty [1980].

This method is one of the most popular in the literature. According to Saaty, through the compar-
isons between the alternatives and criteria decomposed into hierarchies, the priorities calculated in
the method are able to capture measures based on experience, intuition and physical data to solve
the problem.

Ho [2008] provided a literature review of the applications of the integrated AHP. Note that
there are many applications of this method as well as combinations with other methods. In addi-
tion, many authors use the weight of the criteria based on AHP in their ability to represent measures
regarding criteria judgments. Namely, this strategy is adopted in this current article. The weights
obtained by the AHP were combined to represent the value of the criteria in another multicriteria
method. For simplicity, the stepwise procedure for AHP is not detailed in this paper, however it can
be read in Saaty [2008] and Ho [2008].

3.2. TOPSIS Method
The Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method,

proposed by Tzeng and Huang [1981], which is based at choosing the best alternative, that is with
the shortest Euclidean distance from the positive ideal solution (PIS) and the farthest from the neg-
ative ideal solution (NIS). For instance, PIS maximizes the benefit and minimizes the cost, whereas
the NIS maximizes the cost and minimizes the benefit. It means that each criterion require to be
maximized or minimized. Its applicability has received much attention, especially in supply chain
management and logistics and design, engineering and manufacturing systems fields [Behzadian
et al., 2012]. Moreover, Behzadian et al. [2012] provided a state-of the-art literature survey on
TOPSIS applications and methodologies. According to these authors, the following steps are used
to evaluate the method, see Fig. 1.

3.3. Multicriteria Decision Analysis based on Scenarios
According to Polasky et al. [2011], the major advantages of decision theory are that it

provides a clear statement of the problem and objective for DM. However, the authors pointed out
the importance of “to consider not only the future impacts of current decisions, but also the potential
for learning from decisions that can help inform future decisions”.

Decision-making under uncertainty scenarios deals with “sets of plausible stories, sup-
ported with data and simulations, about how the future might unfold from current conditions under
alternative human choices” [Polasky et al., 2011]. Durbach and Stewart [2012b] considered at least
five types of modeling uncertainties. And Durbach and Stewart [2012a] provided a general formula-
tion for uncertainty modeling. The evaluation expected of an alternative Ai takes into consideration
the weight associated with a specific scenario, the number of scenario used and the evaluation of
alternative Ai on criterion Cj . Aggregation over scenarios were recommended by the authors.
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Figure 1: Stepwise procedure for TOPSIS methodology

Source: Behzadian et al. [2012]

4. Research Methodology
4.1. Optimization Problem

As stated above, this paper aims at performing a solution for HTD and GMSP in a co-
ordinated way by using an adapted version of the Chu-Beasley GA. Our meta-heuristic technique
combines a specialized genetic algorithm and linear programming. This technique was adapted, as
described in 2.1. Firstly, the GA solves the GMSP and then the linear programming makes a local
search of the HTD part of the solution, subtracting the power capacity of the unit to be maintained
from the total capacity of its respective power plant. The proposed model was inspired by previous
works on HTD and GMSP [Jimenez and Paucar, 2007; Bisht, 2012; Martı́nez et al., 2014]. It is im-
portant to remark that non exact techniques do not guaranty the optimal solution, but a good quality
solution that eventually might be the global optimum. At the end of the evolution process of the
GA, the individuals represent good quality solutions, in this case that means, individuals of low cost
and eventually without rationing. Considering cost as the only criterion, the decision maker will
prefer the solution with lowest value. In this research, in order to analyze how the MCDM methods
can be applied, we opted for solutions with greater variability, that is, we stopped the GA before
its convergence to have a set of solutions diversified in the evaluated criteria. Keeping the same
mathematical model (see 2.2), parameters of demand and water inflow were varied. Data presented
by Martı́nez et al. [2014] were used. The authors took real data published by the UPME (Mining
and Energy Planning Unit of Colombia, in English) and consider a planning term of 52 weeks.

4.2. Decision Making Considering Scenario Analysis
A set of 80 solutions was obtained through the proposed model, i.e. 80 maintenance

plans. These 80 alternatives were evaluated on following criteria: Cost (C1): related to cost for
each alternative; Rationing (C2): related to rationing for each individual of GA; Distance (C3):
related to distance between the individual and Base Plan.

According to Polasky et al. [2011], decision-making under uncertainty scenarios deals
with “sets of plausible stories, supported with data and simulations”. More than that, Durbach and
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Stewart [2012b] argued that previous works showed that people focus on optimistic scenarios and
ignore pessimistic scenarios when predicting their own performance. Given the above, we created 5
different scenarios modifying the parameters of water inflows and demand. They are: Standard (S1):
same parameters of the optimization model; Low Pessimistic (S2): low hydrology and low demand;
Very Pessimistic (S3): low hydrology and high demand; Low Optimistic (S4): high hydrology and
high demand; Very Optimistic (S5): high hydrology and low demand. The distance to the base plan
was the same for all scenarios.

In order to get the weight of the criteria, the AHP method was invoked giving higher
degree of preference for the alternatives with lower cost and less demand. The weights obtained
from the AHP were: C1: 0.4660, C2: 0.4328 e C3: 0.1012. Then, the TOPSIS method was
executed for each scenario. Five different rankings were obtained. They represent the preferences
of the decision maker regarding the weights used and reflect the ordering of each alternative for
each scenario, based on variations of water inflow and energy demand.

Subsequently, as suggested by Durbach and Stewart [2012b] we compare and aggregate
the results from different scenarios in order to get a single final ordering. In this step, we adopt
different weights for each scenario seeking to safe against some future event.

The current solution for the optimization process was built on C++ language. CPLEX
solver was invoked for the linear part of the solution. The multicriteria analysis was implemented
in Matlab R2015a.

5. Results and Discussion
5.1. Optimization Process

Computational results show that the Base Plan presents no water spillage along the plan-
ning term, but rationing (non served power demand) of 549.812 MW at the first period. The cost
for this plan is $1,346,739.060.

Table 1 contains the parameters of the genetic algorithm for the best solution found by
our GA algorithm: The crossover mechanism selected for the solution is 1-point typed.

Table 1: Parameters of the genetic algorithm.
npop nmut ntor ncand α β γ gen

80 0.0022 2 2 1 5 9, 914.705 1, 000

The best solution obtained by our GA-based meta-heuristic has a cost of 1,202,232 MU .
The vector containing the initial week of the maintenance schedule is [18 28 24 22 30 26 36 24 32
26 0 9 17 0 37 45 41 47 16 20 30 13]. This is a better solution compared to the Base Plan since
the cost is 10.72% lower (a reduction of 144,355.002 MU ). Besides, the Best Solution presents no
rationing at all. The population turns entirely feasible within 53 iterations (generations) and meets
the incumbent within 555 generations. A remarkable result is the fact that after the generation 852,
the 80 individuals of the population are equal in cost. Due to the diversity characteristic of this
particular GA, this means that in fact we have 80 alternative best solutions, judging only from the
cost point of view.

The best performance of our algorithm is reached when two parents participate in the tour-
nament. A higher number of parents increases the cost of the solution. When setting the population
size at 60 individuals, the algorithm gets trapped in the same value (a local optimum) from the first
generation. The best maintenance scheduling (lowest incumbent) shows up when population size
equals 80 individuals.

Machine Specifications: The tests were performed in a machine Intel (R) Core (TM) i7
-4770 3.40 GHz processor, 16 GB RAM, Windows 7 64-bit operating system. No parallel pro-
cessing was carried out. Average run time of the algorithm is 16810174ms (4.67 hours) for 1,000
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iterations. This means that each iteration takes about 16.81 seconds. The computational complexity
of the algorithm is O(n21 ∗ n2). For this specific machine, the time constant for the algorithm mc
is calculated as the quotient between an iteration time and the complexity: mc = 16.81/(n1 ∗ n22)
where n1 = 22 (number of generation units) and n2 = 52 (number of time periods)

5.2. Decision Making
It is known the best solution provided by GA-based meta-heuristic has low cost (compared

with the base plan) e presents no rationing at all. Based on that, for we got a set of diversified
solutions, some generations of the genetic algorithm were executed, but the algorithm was stopped
before convergence. The TOPSIS method was performed using the weights obtained by the AHP
method. This process resulted in 5 different rankings. For the sake of simplicity, only the index of
the first 20 alternatives of each scenario were summarized in Table 2. The interpretation indicates
in which position each of the listed alternatives was ranked by TOPSIS method in each scenario.
The A1 alternative was ranked at 40th in the S1 scenario, 70th in the S2 scenario and so on.

Table 2: Index of the 20 best alternatives of each scenario
An 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
S1 40 17 42 18 5 4 22 24 20 39 3 9 1 48 63 62 8 2 32 51
S2 70 27 73 29 9 8 35 50 45 72 7 24 4 3 2 1 13 6 5 38
S3 75 33 73 32 14 8 37 44 28 66 7 15 5 4 2 1 19 6 3 29
S4 52 10 26 20 9 8 54 27 28 72 7 12 4 3 2 1 33 6 5 41
S5 73 26 69 25 10 8 34 40 27 66 7 13 4 3 2 1 15 6 5 32

According to Durbach and Stewart [2012a] the evaluation of uncertainty includes aggre-
gation of scenarios. The evaluation expected of an alternativeAi takes into consideration the weight
associated with a specific scenario, the number of scenarios used and the evaluation of alternative
Ai on criterion Cj . It is also known that the good method of decision making is one that reflects
the preferences of the decision maker. When adding different scenarios, these preferences must be
taken into account. Thus, adopting a conservative decision, the following weights were used for the
scenarios: S1: 0.4, S2: 0.2, S3: 0.1, S4: 0.2, S5: 0.1. In order to obtain aggregated ranking each

alternative was multiplied by the weight of scenario, i.e.
N∑
i=1

J∑
j=1

[wj ∗ Aj
i ], where wj is the weight

associated with criterion j and Aj
i is the evaluation of alternative i on criterion j. Finally, the final

ordering was obtained. The final result with the first 20 alternatives was summarized in Table 3.

Table 3: Final ordering using scenarios
Ranking 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
An 13 18 11 6 5 65 41 12 55 30 19 17 34 64 2 69 14 66 4 68

After comparing the results of the best ranked alternative (A13) with the least cost alter-
native of each scenario (among those obtained by our GA-based meta-heuristics) it is realized that
this alternative presented an average increase of 2.40% on criterion Cost (C1). However, this same
alternative offers benefits when it is compared to the other two criteria, Rationing (C2) and Distance
(C3). The gains overC2 are little expressive, but it has an expressive gain compared withC3, even if
this criterion has the lowest weight obtained by the AHP method. The distance from the alternative
obtained by the aggregation of the methods is, on average, 2.38 times smaller than the plan base.
These results were summarized in Table 4.

The aggregation analysis demonstrates that although cost remains as a fundamental cri-
terion, other impacts should not be neglected in a GMSP + HTD energy decision-making. The
strategy of using different scenarios and considering weights for each scenario, given the probabil-
ity of occurrence or the preferences of the decision maker may improve the decision making process
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Table 4: Differences between the values of the best alternative from the rankings aggregated with the lowest
alternative of least cost in each scenario

Scenarios
Criterion S1 S3 S3 S4 S5
C1 +1.91% +0.41% +4.58% +3.79% +1.32%
C2 0% 0% +0.01% +0.41% 0%
C3 −411% −343% −306% −366% +235%

minimizing losses in case of future changes.

6. Conclusion
The Generation Maintenance Scheduling Problem aims to determining when the units

in power systems should be taken offline for preventive maintenance. The combination with Hy-
drothermal Dispatch seeks to determine the use of water resources for hydroelectricity generation,
minimizing the costs and upgrading the reliability of whole system.

We have presented a hybrid solution for the GMSP based on a meta-heuristic that com-
bines a specialized genetic algorithm and a linear programming. The model was suitable for solving
this problem. Some generations of the GA were executed, but the algorithm was stopped before
convergence to have a set of solutions diversified and to do the decision making analysis. The
multicriteria method AHP was used to get the weight of the following criteria: Cost (C1): 0.4660,
Rationing (C2): 0.4328 and Distance to the base plan (C3): 0.1012. Five uncertainty scenarios were
created to help clarifying the effects of future impacts of current decisions, varying parameters of
water inflows and demand. These scenarios were aggregated and a single final ordering was ob-
tained. The solution best ranking by the aggregation was compared with the least cost solution of
each scenario, despite an average increase of 2.40% in cost, the alternative has low difference in
relation to rationing and presents a reduction of 2.38 times in the distance to the base plan.

The data used in this paper come from a practical real-life problem of maintenance plan-
ning. The mathematical model proved to be suitable for the problem, but it is known that there are
many investigations in this field of research. Regarding decision-making, scenario analysis have re-
ceived potential attention from researchers and practitioners. A test system built and the strategies
for decision making is available for further interested in this field of research.
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