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Abstract 
Emerging markets are known to have unique characteristics when compared to more developed 
markets. The direct use of standard mathematical models proposed and tested in more developed 
markets is not always recommended in emerging markets. Extreme events in emerging markets have 
already been verified to distort the results obtained when using standard mathematical models in 
several situations, including optimal portfolio structuring. One of the reasons for that is that extreme 
events and/or economic discontinuities (such as the Brazilian and the Argentinean devaluation crises) 
modify the financial environment in such a way that past data become of little use looking forward. In 
this work we concentrate on proposing a methodology to handle extreme events. Numerical examples 
taken from the Latin American stock markets are used to illustrate our proposal. 
Key words: Emerging Markets; Portfolio Optimization; Robust Statistics. 

 
Resumo 

As caraterísticas singulars do mercados emergentes são bem conhecidas quando comparadas às dos 
mercados mais desenvolvidos. O uso de modelos matemáticos, propostos e testados nos mercados 
mais desenvolvidos, nem sempre pode ser recomendado para os mercados emergentes. Eventos 
extremos nos mercados emergentes distorcem os resultados obtidos usando modelos matemáticos em 
diversas situações, incluindo a otimização de carteiras de investimentos. Uma das razões para tal é que 
eventos extremos modificam os dados substancialmente (como após as desvalorizações cambias no 
Brasil e Argentina no passado recente). Neste trabalho nos concentramos em uma proposta para 
otimizar carteiras quando da presença de eventos extremos. Exemplos numéricos retirados de 
mercados acionários emergentes são utilizados para ilustrar o potencial da proposta apresentada. 
Palavras Chave: Mercados Emergentes; Otimização de Carteiras; Estatística Robusta. 
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1. Introduction 
Standard models for optimal portfolio structuring have been criticized because of their very 

restrictive modeling hypotheses (Chopra [1993], Gardner and Wuilloud [1995] and Michaud [1989] 
among others). Following that, several modeling improvements have been proposed, including the use 
of scenario analysis (Nemhauser et al. [1989]), network structures (Crum et al. [1979]), more general 
utility functions (Kallberg and Ziemba [1983]), incorporating investor’s expectations (Black and 
Litterman [1991], Koskosidis and Duarte [1997]), asymmetric risk measures (Markowitz [1959], 
Harlow [1993]), large-scale models (Carino et al. [1994], Hiller and Eckstein [1993]) etc.   

Emerging markets are known to have unique characteristics when compared to more 
developed markets. The direct use of the standard mathematical models proposed and tested in more 
developed markets is not always recommended in emerging markets. For example, extreme events 
(Embrechts et al. [1997]) in emerging markets have already been verified to completely distort the 
results obtained when using standard mathematical models (that is, those used by practitioners in more 
developed markets) in several situations, such as hedging using futures contracts (Duarte and Mendes 
[1998]), systematic risk estimation (Duarte and Mendes [1997]), Value-at-Risk computation (Duarte 
[1997]), volatility estimation (Mendes and Duarte [1999]), currency overlay (Duarte and Rajagopal 
[1999]), estimating term structures of interest rates (Almeida et al. [1998]), and optimal portfolio 
structuring (Reyna et al. [1999b]).  

Practitioners working in the asset management industry in emerging markets have not yet 
incorporated optimization models in their routine. One of the reasons is that extreme events and/or 
economic discontinuities (such as the Real Economic Plan, the Mexican Crisis, the Brazilian and the 
Argentinean devaluation crises etc.) modify the financial environment in such a way that past data 
become of little use looking forward. Portfolio optimization models must allow these changes to be 
easily incorporated in the methodology or, otherwise, they will remain outside the routine of local 
practitioners. For instance, see Reyna et al [1999a] for a methodology to incorporate macroeconomic 
discontinuities in a portfolio optimization methodology with an application to international 
diversification in Latin American emerging markets.        

In this work we propose a methodology to handle extreme events based on the theory of robust 
statistics (Huber [1981]). To that end, we review in Section 2 some basic concepts from robust 
statistical theory, prove the main results needed throughout the article, and verify that the two most 
used portfolio optimization models by practitioners in international financial markets do not provide 
robust optimized portfolios. Section 3 describes portfolio optimization models that can provide robust 
optimized portfolios, addressing an important practical question: the computational implementation of 
these proposals. Section 4 provides two numerical examples from the Brazilian stock markets and one 
considering an international emergent market portfolio. Our conclusions are presented at Section 5. 
 
2. Robust Statistics Applied to Portfolio Optimization    

Definition 1: The General Asset Management Model (GAMM) is defined in this work as  
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where n  is the number of assets, m  is the number of scenarios, ( )⋅U  is an utility function, x  
represents the composition of the portfolio, w  is the wealth obtained under each scenario, 0c  is the 

initial wealth available for investing, ERR += *  (where *R  is a nm×  matrix of returns for all m  
scenarios and each of the n  assets under consideration, and E  is a nm×  matrix of 1’s), and ne ℜ∈  
is a vector of 1’s. 
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Definition 2: If *x  is an optimal solution for the GAMM, it represents an optimal  portfolio 
composition. 

Definition 3: A Statistical Utility Function (SUF) is any utility function which can be put as a 
linear combination of real valued statistical estimators in the most parsimonious form. A SUF can be 
written as  

( ) ( )∑
=

⋅=⋅
l

k
kkTU

1
β                                                 (2) 

where ℜ∈kβ  and ( )⋅kT  is a real-valued statistical estimator. 
Definition 4. Given a sample ( )myyyy ,,, 21 K= , we define a contaminated sample 

( )myyyy ',,','' 21 K=  as a sample obtained by replacing any set of p  (with mp < ) observations in 
y  by arbitrary values.  

Definition 5. We define the maximum bias that can be caused by a contaminated sample on a 
real valued estimator ( )⋅T  as 

 ( ) ( ) ( )yTyTyTpb y −= 'sup,, '                                    (3) 

where ⋅  is a norm, the “sup” is taken over all contaminated samples, and p  is the number of 
contaminating values.  

Definition 6. The finite sample replacement breakdown point is defined as  
( ) ( ){ }∞== yTpbyT

m
pm ,,min,*ε                                     (4) 

where m  is the sample size and p  is the number of contaminating values.    
The definition above of finite sample replacement breakdown point was given in Donoho and 

Huber [1983]. They define the breakdown point as the minimum proportion of observations of a 
sample that, if replaced by arbitrary values, can make the maximum bias of ( )⋅T  to be infinity, or ( )⋅T  
not to exist. 

Definition 7. Given  ( )⋅T  and 'y , we name as the Least Favorable Sample (LFS) as any 
sample y  for which ( ) ∞=yTpb ,,  for a given p . 

Theorem 1. The breakdown point of a SUF equals the smallest breakdown point among all 
estimators composing the SUF. Proof: See Reyna [2001].  
 Definition 8. Given a random variable Y , with distribution YF , we define a contaminating 
process for Y as the process 

( ) ( ) HY FFHY εεε +−1~,                                            (5) 
where HF  is the distribution of an arbitrary random variable H , and ( )1,0∈ε . 

For the purposes of this work one can consider the existence of an atypical observation for a 
financial time series as a contaminating process. That is, the existence of an atypical observation for 
the return (gain or loss) of an asset can be regarded as the  process of replacing a typical observation 
by an arbitrary value.  

At this point it is important to observe that the contaminating process is related to the elements 
of  the scenario matrix *R , but the result proved in Theorem 1 depends on the contamination of the 
elements in w . It is straightforward to verify that a contamination process for w  is generated from a 
contaminating process for the columns of the scenario matrix *R  for any feasible solution of model 
(1).  

As a consequence, when using a GAMM for structuring an optimal portfolio, if the SUF used 
is not robust, and if the scenarios used for the returns of the assets under consideration present outliers, 
the resulting optimal portfolio composition may be distorted by atypical observations. 

Definition 9. A real portfolio is a portfolio obtained from a GAMM with a non-contaminated 
sample.     
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Definition 10. The robust optimal portfolio is a portfolio obtained from a GAMM with a SUF 
with breakdown point greater than the contamination proportion existing in w . 

Based on the theoretical structure defined above, we can prove that the optimized portfolio 
obtained from the Mean-Variance model (Markowitz [1959]) is not a robust portfolio. The Mean-
variance model is obtained by substituting in (1)  
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where all scenarios are assumed to have equal probability (
m
1

= ), iw  is the wealth under scenario i ,  

and λ  is the investor’s risk aversion parameter.  
Corollary 1. The optimal portfolio obtained from the Mean-Variance model is not a robust 

portfolio. Proof: See Reyna [2001].  
The GAMM is being increasingly used by practitioners in international financial markets. 

Usually, the difference between the models is related only to the SUF chosen. One of the most used 
SUF is 
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where MAR is the investor’s  Minimal Acceptable Return in a downside risk portfolio optimization 
framework, as proposed by Harlow [1993], and all other parameters/variable have already been 
defined. The Mean-Downside Risk model is obtained by substituting (7) in (1). 

Corollary 2. The optimal portfolio obtained from the Mean-Downside Risk model is not a 
robust portfolio. Proof: See Reyna [2001]. 

That is, the two of the most used portfolio optimization models by practitioners in 
international financial markets  the Mean-Variance model and the Mean-Downside Risk model  
do not provide robust optimal portfolios. We need to search for a framework that allows us to 
“generate” portfolio optimization models which can provide robust optimal portfolios.   
 
3. The GAMM and its Robust Version 

Although we do not intend to present the most comprehensive framework for portfolio 
optimization models that can provide robust optimal portfolios in this article, Theorem 1 helps us in 
this task: in order to propose a GAMM which can provide robust optimal portfolios we need to modify 
the SUF, using to that end only statistical estimators that possess high breakdown points (for instance, 
50%). 

For instance, one can use a SUF such as 
( ) { } ( ){ }{ }iimi wcwwU −+−= ≤≤≤≤ MAR1;0maxmedianmedian 0mi11 λ          (8)  

We define a GAMM with a SUF such as (8) as the Median-Median Downside Risk (MMDR) 
model. This is an interesting model, as verified next. 

Corollary 3. The optimal portfolio obtained from the MMDR model is a robust portfolio. 
Proof: See Reyna [2001]. 
 
3.1 Computational Implementation 

A difficult problem in robust statistics estimation, and in particular in robust regression, is that 
of computing estimators based on minimization of the thk  smallest value of absolute residuals, 
because of their combinatorial complexity (Bocvek and Lachout [1995]). It can be verified that the 
MMDR model is a specific case of this kind of problems. 

The MMDR can be formulated in a Mixed Integer Programming framework as   
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where medianw  represents the median of the wealth obtained under the hypotheses of each scenarios, 

mediand  represents the median of the downside risk measure, −+ ddzs  and,, are all auxiliary variables, 
M is a “big constant” chosen in accordance to the “Big M ” method (Luenberger [1984]), and all 
other parameters/variables have been defined before. 

The idea behind the formulation in (9) is that the process of calculating the median of a sample 
is equivalent to sorting out the sample and getting the value that is in the middle of the sorted sample. 
This means that we will have fifty percent of the sample below and fifty percent above the median: 
that is why we need the binary variables zs  and , in order to “control” the proportion of the sample 
below and above medianw  and mediand .  

From the optimization point of view, model (9) is a difficult problem to solve, because of its 
computational complexity. This complexity is directly related to the number of scenarios ( )m  and 
assets ( )n  used in the optimization process: the larger these values, the more difficult it becomes to 
obtain the robust optimized portfolio. For implementation details please refer to Reyna [2001]. 
    
4. Numerical Examples 

In this section we provide three numerical examples:  
a) The first example is based on the hypothesis that we know the true probability distribution 

function of all assets’ returns, and we use a contamination process for this distribution.  
b) The second example uses historical data, with a specific atypical event. The objective is to 

“simulate” the real world and to illustrate the usefulness of our proposal in practice.  
c) The third example considers the task of building a portfolio in global emerging stock markets. 

In the first two numerical experiments we use daily data from the Brazilian equity market from 
December 1st, 1998, to May 7th, 1999. This period was chosen because it covers the Brazilian 
currency devaluation crisis of January, 1999. The assets considered for the analyses were the ten most 
traded stocks in the São Paulo Stock Exchange during that period of time (presented below in 
alphabetical order): 
a) Bradesco PN.  
b) Banco do Brasil PN.  
c) Cemig PN.  
d) Eletrobrás ON.  
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e) Eletrobrás PNB.  
f) Petrobrás PN.  
g) Telebrás ON.  
h) Telebrás PN.  
i) Telesp PN.  
j) CVRD PNA. 

The riskless asset is represented by local short-term interest rates.  
In the third numerical example, we used monthly data from five emerging stock markets: 

a) Brazil. 
b) Argentina.  
c) Mexico.  
d) Indian.  
e) Hong Kong.  
The data used covers a period of time that goes from 1997 to 2004. 
 
4.1 The First Numerical Example 

The main assumption in this first example is that we know the probability distribution of all 
assets considered for investing: a Multivariate Normal distribution. This family of distributions needs 
only two parameters for its full characterization: the mean vector (µ ) and the covariance matrix (Σ ). 
For estimating these parameters we use all historical data available. We also rely on a robust 
estimation technique: the Minimum Covariance Determinant (Rousseeuw and Zomeren [1990]). This 
procedure provides the robust estimators for µ  and Σ .  
 
4.1.1 Scenario Generation 

With the estimates just obtained we generate a two-month sample (that is, forty-two business 
days) of returns for all assets under consideration using a Monte Carlo method. We generate one 
hundred sets of two-months samples, which we refer to from now on as “clean scenarios.” At the end 
of the scenario generation process we end up with one hundred “clean scenarios.” 
 
4.1.2 Contaminating Process 

The next step consists of contaminating the “clean scenarios” using outliers. To that end, our 
choice was to use the outliers found in the historical data. These outliers can be identified using a 
robust distance concept (Rousseeuw [1984]). According to this distance these historical outliers are 
ordered and introduced in the “clean scenarios” according to the degree of contamination desired. In 
the numerical results presented below the samples contained 5%, 25%, 40% or 50% of contamination. 
After the contamination the “clean scenarios” become the “contaminated scenarios.”  
 
4.1.3 Models 

We compare two portfolio optimization models: 
a) The first one is the Mean-Downside Risk model, mentioned before. We shall refer to this model as 

the “classical model.”  
b) The second one is the MMDR model, presented above. We shall refer to this model as the “robust 

model.”  
In both cases we set 1=λ .  
 
4.1.4 Steps  

The two steps of this first numerical experiment are: 
a) To run both models for the 100 contaminated samples for all different levels of contamination 

(that is, those with 5%, 25%, 40% and 50% of outliers). 
b) To compare the portfolios’ optimal compositions obtained for different samples, assessing the 

effect of the contamination proportion on the two models. 
 
4.1.5 Results  
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Figure1 and Figure 2 compare the portfolio allocation in one of the stocks considered (Cemig) 
for each of the one hundred 5% “contaminated scenarios,” when using the two models mentioned 
above. Figure 3 and Figure 4 provide the similar results for each of the one hundred 25% 
“contaminated scenarios.”  

Clearly, while in the case of the “classical model” the optimal allocation varies arbitrarily 
between 0% and 100% for the different scenarios used, in the case of the “robust portfolio” it remains 
fairly stable for the two levels of contamination depicted. Also notice that the allocation provided by 
the “robust model” varies slightly more in the case of the 25% “contaminated scenarios” when 
compared to the 5% “contaminated scenarios.”       

We now observe the effect of higher contamination proportions.  Figure 5 shows for a 
randomly chosen sample, for the “classical model,” the behavior of the optimal allocation for two 
stocks (Cemig and CVRD) as the percentage of contamination increases (from 0%, to 5%, to 25%, to 
40%, and finally to 50%). Figure 6 shows the corresponding result obtained when using the “robust 
model,” instead of the “classical model.”  

We can note a more stable pattern of the optimal weights obtained from the “robust model” 
when compared to the “classical model” as the contamination proportion increases to the value of the 
breakdown point (that is, 50%).  

The six figures exhibited so far clearly show that the optimal allocation obtained from the 
“classical model” varies much more than those obtained from the “robust portfolio” as the 
contamination proportion increases. As a consequence, we can expect the optimal allocation proposed 
by a “robust model” to remain more stable during/following extreme events. Remember that this was 
exactly our objective when proposing this new approach to optimal portfolio structuring.      
 
4.2 The Second Numerical Experiment 

Using the data available, in this experiment a window of 42 days is used to define the 
historical scenarios. This window is shifted every day so that, at each step, a new sample is obtained 
by the incorporation of a new observation, and the withdraw of the oldest one. A total of  40 samples 
were generated. 

We chose the initial sample to contain the days corresponding to the Brazilian currency 
devaluation. The objective of this numerical example is to understand the practical effect of atypical 
events in the optimal allocations proposed by the two models.  

For all 40 windows we optimize both models. At each step, the next-day returns (thus, out of 
the sample) are used to obtain the marked-to-the-market returns for the optimal portfolios proposed by 
the “robust model” and by the “classical model.” By moving the window, and following the 
portfolios’ recommendations for the optimal allocation, a set of 40 out-of-sample portfolios returns 
were obtained.  
 
4.2.1 Results 

Figure 7 depicts the out-of-sample returns obtained for the two models. The first comment is 
that the returns posted by the two models are not much different, except for the period around the end 
of March, 1999: that is the period when the effects of the Brazilian devaluation start leaving the 
historical scenarios used for the optimizations. That is, around the end of March, 1999, almost two 
months after the devaluation, the optimal allocations provided by the “robust model” tend to change 
smoothly, this not being the case for the “classical model”. As a consequence, since the stock markets 
returns during that period remained fairly stable, the returns posted by the “robust model” change 
smoothly too, this not being the case, again, for the “classical model.” These comments corroborate 
the results obtained in the first numerical example.      

Finally, in Table 1 we observe that the mean and the accumulated out-of-sample returns 
obtained with the “robust model” were higher than the ones obtained with the “classical model,” for 
basically the same level of out-of-sample volatility. These results illustrate a better ex-post 
performance for the “robust model” when compared to the “classical model.”  
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4.3 The Third Numerical Example 
As in the two previous cases, we relied on historical scenarios in this numerical example. We 

used a window of three years to generate monthly-return scenarios to the models. The two models 
(“robust” and “classical”) were run and evaluated out-the-sample, at the end of each month, when 
rebalancing was allowed. This way, we tried to replicate the decision making process on an 
institutional investor as time passes, allowing changes in the portfolios on at the end of each month.    

Figure 8 exhibits the out-the-sample results for both models. We observed that the results 
obtained for the robust portfolio proved to be slightly worse when the market was up, but were much 
better when the market was down. A simple calculation pointed out that the accumulated return 
obtained with the “robust model” was higher than the one obtained with the “classical model” (36% 
against 19%), and that the standard deviation of returns for the “robust model” was lower when 
compared to that of the “classical model” (6,5% against 7,7%).   

Table 2 and Table 3 depict the portfolio composition at the end of four months covered by the 
simulation process. Note that the robust portfolio composition is more “stable” through time, 
illustrating that changes in the allocation suggested by the “robust model” are smoother than those 
suggested by the “classical model”. 
 
5. Conclusion 

Asset managers need to make strategic and tactical investment decisions: the strategic 
decisions are related to the process of elaborating a long term investment policy; the tactical decisions 
are related to the process of elaborating short term decisions. Although the proposal presented in this 
article can handle both types of decisions, it is more suited to strategic decisions.   

The strategic asset allocation is more concerned with the “essence” of assets return-risk  
behavior, instead of atypical events that the financial markets may occasionally present, distorting the 
short-term performance of assets. Since robust procedures are typically concerned with the pattern 
followed by the majority of the data, this characteristic is one of the main incentives for using the 
proposed robust optimal portfolios for strategic asset allocation. For instance, it is not reasonable for 
institutional investors to alter all their investment policy (say, devised for an investment horizon of 
decades) just because of a few atypical observations.   

The optimization computations required by our proposal present a higher level of 
computational difficulty when compared to the computations required by the portfolio structuring 
methodologies used by practitioners nowadays. More research on proposing more efficient 
computational solutions for large-scale mixed integer programming models is needed. Until new 
developments are made for large-scale mixed integer programming, our proposal will remain useful 
only when applied to small portfolio structuring models, as in our numerical examples.   

Finally, the concepts developed in this article can be easily adapted to other applications out of 
financial markets, such as robust crew scheduling, robust production planning, and robust assignment, 
to mention only three possibilities. 
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Figure 1. CEMIG’s Optimal Allocation Using the “Classical Model”  

 
Figure 2. CEMIG’s Optimal Allocation Using the “Robust Model” 

 
Figure 3. CEMIG’s Optimal Allocation Using the “Classical Model” 

Figure 4. CEMIG’s Optimal Allocation Using the “Robust Model”  
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Figure 5. Optimal Allocation for Two Stocks Using the “Classical Model”  

 
Figure 6. Optimal Allocation for Two Stocks Using the “Robust Model” 

 
Figure 7. Out-of-sample Returns for Two Models 

 
Figure 8. Out-of-sample Returns for Two Models 
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Table 1. Statistics for Out-of-Sample Returns of Two Models 
 

 “Classical Model” “Robust Model” 
 

Mean Return 
 

 
1.453% 

 
1.633% 

 
Accumulated Return 

 

 
22.936% 

 

 
26.167% 

 
Standard Deviation 

 
0.038% 

 
0.039% 

 
 
 

Table 2. “Robust Model” Composition 
 

 Brazil Argentina Mexico India Hong Kong 
 

Dec.-1999 
 

68% 
 

0% 
 

20% 
 

0% 
 

12% 
 

Dec.-2000 
 

66% 
 

0% 
 

25% 
 

0% 
 

10% 
 

Dec.-2001 
 

39% 
 

9% 
 

14% 
 

0% 
 

38% 
 

Dec.-2002 
 

27% 
 

0% 
 

73% 
 

0% 
 

0% 
 

 
 

Table 3. “Classical Model” Composition  
 

 Brazil Argentina Mexico India Hong Kong 
 

Dec.-1999 
 

0% 
 

0% 
 

0% 
 

100% 
 

0% 
 

Dec.-2000 
 

0% 
 

0% 
 

0% 
 

0% 
 

100% 
 

Dec.-2001 
 

0% 
 

0% 
 

100% 
 

0% 
 

0% 
 

Dec.-2002 
 

0% 
 

0% 
 

100% 
 

0% 
 

0% 
 

 


