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Abstract

In this work, the problem of the proper dimension of a Multiple Correspondence Analysis
(MCA) is discussed, based on both the re-evaluation of the explained inertia sensu Benzécri
(1979) and Greenacre (2006) and a test proposed by Ben Ammou and Saporta (1998). This
leads to the consideration of a better reconstruction of the off-diagonal sub-tables of the
Burt’s table crossing the nominal characters taken into the account. Thus, Greenacre (1988)
Joint Correspondence Analysis (JCA) is introduced and the results obtained on an appli-
cation are shown and the quality of reconstruction of both MCA and JCA solutions are
compared to the Simple Correspondence Analysis results of the two-way tables. It results
that JCA’s reduced-dimensional reconstruction is much better than the MCA’s one.

Keywords: Correspondence Analysis, Multiple Correspondence Analysis, Joint

Correspondence Analysis.

1 Introduction

In this paper, we deal with the problem of the proper dimension of of Multiple Correspondence
Analysis [MCA, Benzécri et al. (1973-82); Greenacre (1983)] solution, and the performance of its
alternative, the Joint Correspondence Analysis [JCA,Greenacre (1988)], whose solution depends
on an a priori selected dimensionality. The performance is based on the partial reconstruction of
the original data that results by the application of both MCA and JCA reconstruction formulas.

The application of these methods to an example taken from studies in linguistics Nardi (2007)
will show unexpected results when comparing the reconstruction: even if JCA was supposed to
perform better, the results of MCA, in comparison with those of JCA. Indeed, the application to
the Burt’s table of the chi-square metrics, and the following correspondence analysis, emphasize
too much the importance of the block-diagonal matrices, whose interest is practically null, in
respect to the off-diagonal ones that contain the most interesting information.

2 Theoretical framework

In exploratory multidimensional scaling the identification of the proper dimension of the solution
is the basis to define a threshold between relevant information and residuals. The relevant
information is also tied to the possibility to interpret the factors, according to the paradigms
of the methods at hand: it is usually the percentage of explained inertia the most widely used.
Thus, to take into account a large share of inertia is the most evident rough method that may
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be used and a higher-dimensional solution is normally preferred to a smaller one only if these
values are significantly smaller.

The quality of the results is also of high importance and this is the reason of this paper,
in which we show the very bad quality of a very bad reduced dimensional solution of Multi-
ple Correspondence Analysis, in particular in respect to the alternative Joint Correspondence
Analysis.

2.1 Singular Value Decomposition and Correspondence Analysis

We may ground our further discussion on the well known Singular Value Decomposition [ SVD,
(Greenacre, 1983; Abdi, 2007)] theorem, that states

Theorem 1. Any real matrix X may be decomposed as X = UΛ1/2V ′, with Λ the diagonal
matrix of the real non-negative eigenvalues of XX ′, U the orthogonal matrix of the corresponding
eigenvectors, and V the matrix of eigenvectors of X ′X (with the same eigenvalues), with both
constraints U ′U = I and V ′V = I.

This theorem corresponds to the reconstruction formula of an r-rank matrix

xij =

r∑
α=1

√
λα uiα vjα

on which the Eckart and Young (1936) theorem is based:

Theorem 2. (Eckart and Young) The s-rank reconstruction of any real matrix X, with s < r,
the rank of X, once its singular values are sorted in decreasing order,

xij ≈
s∑

α=1

√
λα uiα vjα

is the best one in the least-squares sense.

In particular, we shall adopt its generalization, more suitable for our purposes:

Theorem 3. Given two real positive definite matrices M and N , any real matrix X may be
decomposed as X = ŨΛ1/2Ṽ ′, under constraints Ũ ′MŨ = I and Ṽ ′NṼ = I.

The solution is given by the SV D of the matrix X̃ =M1/2XN1/2 = FΛ1/2G′, with F ′F = I,
G′G = I, Ũ = M−1/2F , and Ṽ = N−1/2G. It results that Ũ Ũ ′ = M−1 and Ṽ Ṽ ′ = N−1

respectively.
Thus, the exploratory analysis paradigm states that the most relevant information is tied to

the largest eigenvalues and the non-relevant to the least ones. The problem of distinguishing
among them, that is to identify at least a tentative cutpoint of either the singular- or the eigen-
values sequence, remains a crucial issue, that seems more easily solved in the case of Simple
Correspondence Analysis (SCA, Benzécri et al., 1973-82; Greenacre, 1983), since the special chi-
square metrics adopted allows some useful solutions and an easy interpretation of the results.

Let N an r × c contingency table, with n = n.. the table grand total, �r = (p1., ..., pr.)
′ the

vector of row marginal profile (with pij = nij/n), �c = (p.1, ..., p.c)
′ the vector of column marginal

profile, and Dr = diag(�r), Dc = diag(�c) the corresponding diagonal matrices. The SCA of N
results from the application of GSVD to the contingency table N with the constraints given by
the diagonal matrices Dr and Dc. As a result, the reconstruction formula of N is:

nij = nricj

⎛⎝1 +

min(r,c)−1∑
α=1

√
λα fiα gjα

⎞⎠ .
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This results from the formulation of the problem in terms of the best weighed least-squares
approximation of the matrix N by another matrix H of lower rank which minimizes

r∑
i=1

c∑
j=1

(nij − hij)
2

eij
=

r∑
i=1

c∑
j=1

(nij − hij)
2

nricj
= n−1trace

(
D−1

r (N −H)D−1
c (N −H)′

)
(1)

where the weights are the inverse of the expected frequencies. Thus, the reconstruction formula
may be well synthesized as

N = n �r �c ′ +DrFΛ
1/2G′Dc. (2)

As a matter of fact, in order to produce a simultaneous graphical representation, SCA eigenvec-
tors are usually rescaled, by defining as coordinates the quantities Φ = FΛ1/2 and Ψ = GΛ1/2.
With this transformation, and applying the Eckart and Young’s theorem, any reduced rank
approximation obtained by limiting the sum above to the r largest eigenvalues is the best ap-
proximation in the weighed least-squares sense:

nij ≈ nricj

(
1 +

r∑
α=1

1√
λα

φiα ψjα

)
.

It results that the inertia along each dimension α equals χα
2 = nλα. As in SCA the eigenvalues

sum, up to the grand total, to the table chi-square, namely

χ2 = n

min(r,c)−1∑
α=1

λα,

the cutting problem is simply solved by using the classical test for goodness of fit (Kendall and
Stuart, 1961) or more easily through the Malinvaud (1987) test. The test may be applied, as,
for each α-dimensional partial reconstruction, the residuals correspond to

Qα =
∑
ij

(nij − ñαij)
2

ñαij
,

asymptotically chi-square-distributed with (r − α− 1)× (c− α− 1) degrees of freedom. In the
formula, ñαij is the cell value estimated by the α-dimensional solution, and the table chi-square
test results when α= 0 and ñ0ij =

ni· n·j

n··
is the expected value under independence. Now,

Malinvaud (1987) showed that, by substituting the estimated cell values with the expected ones
under independence hypothesis, the formula may be approximated by

Q̃α =
∑
ij

(nij − ñαij)
2

nricj
= χ2 −

α∑
β=1

χ2
β = n

min(r,c)−1∑
γ=α+1

λγ ,

that may be more easily used to check for nullity of the residuals. It is interesting to observe that
to the same property may be associated the partial chi-square test for significance associated to
each eigenvalue, χ2

α = n..λα, with df = (r + c− 2α− 1) (Kendall and Stuart, 1961), to detect
if there are linear ordinations of both rows and column levels that explain the deviation from
expectation (Orlóci, 1978).

2.2 Multiple Correspondence Analysis

It is well known that MCA is but a generalization of SCA and it is based on SCA of either the
indicator matrix Z, whose rows are the units and the columns are all the levels of the considered
variables, or the so-called Burt’s table B = Z ′Z that gathers all contingency tables obtained by
crosstabulating all the variables in Z, including the diagonal tables obtained by crossing each
variable with itself. We drop here other definitions and formulas of both SCA and MCA and
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their relations, that may be found, e.g., in Greenacre (1983). Suffice here to remind that, in
both cases, the chi-square metrics is adopted so that the interpretation of results ought to be
done once again in terms of deviations from expectation. It is easy to see that in this case the
total inertia of Z is Iz = J−Q

Q , where Q is the number of variables and J the total number of

levels, that is J =
∑Q

i=1 li where liis the number of levels of the i-th character and that the
eigenvectors in SCA of both Z and B are the same, whereas the B’s eigenvalues are the squares
of Z’s: μ2α = να. Thus, it makes no difference to perform MCA on either matrix.

As SCA, given a Burt matrix B, MCA may be defined as the weighted least-squares approx-
imation of B by another matrix H of lower rank, minimizing

n−1Q−2trace
(
D−1

r (B −H)D−1
r (B −H)′

)
. (3)

Notice how (3) derives from (1). In terms of the subtables, this may be rewritten as

n−1trace
(
D−1(B −H)D−1(B −H)′

)
=

= n−1
Q∑
i=1

Q∑
j=1

trace
(
D−1

i (Nij −Hij)D
−1
j (Nij −Hij)

′
)
,

where H is the supermatrix of the Hij . Introducing the norm notation

‖A−B‖2ij = trace
(
D−1

i (A−B) D−1
j (A−B)′

)
the minimization can be written as

n−1
Q∑
i=1

Q∑
j=1

‖Nij −Hij‖2ij . (4)

In MCA the identification of the true dimension is particularly difficult, despite the MCA is a
SCA of a particular table, because the chi-square test has no sense. Indeed, for B a chi-squared
statistic may again be calculated as if it were a contingency table, and this simplifies as

χ2
B = 2

Q∑
i=1

i−1∑
j=1

χ2
ij + n(J −Q),

where χ2
ij is the chi-squared statistic for the off-diagonal subtable Nij = Z ′

iZj crossing the i-th
and the j-th characters, but without the possibility to make a test. Unfortunately neither Qα nor
Q̃α computed on the indicator matrix Z are chi-square distributed (Ben Ammou and Saporta,
1998), since Z is composed by 0’s and 1’s.

Usually, the high number of eigenvalues of the MCA, and their corresponding low values,
was criticized by the same Benzécri (1979) that suggests to reevaluate them. Indeed, if we
compare SCA andMCA applied to the same two characters contingency table, a relation between
the eigenvalues may be found. Indeed, by partitioning a two-characters Burt’s table Z ′Z into

submatrices it can be shown (ibid.) the relation μα = 1±√
λα

2 that holds among the eigenvalues
of Z and those of the SCA of the contingency table crossing the two characters. In this case,
it is evident that to the eigenvalues λα = 0 of SCA correspond eigenvalues μα = 1

2 of Z and
να = 1

4 of B, whereas to the others two correspond, one of which larger and the other smaller
than 1

2 and 1
4 respectively. Generalizing this argument to several characters results in admitting

to limit attention in MCA only to the eigenvalues larger than their mean, that is μ ≥ μα = 1
Q .

The argument is discussed in detail by both Benzécri (1979) and Greenacre (1988, 2006).
Both authors suggest, in order to get a measure of relative importance of each factor, to re-
evaluate the eigenvalues larger than the mean (equal to 1

Q) according to the formula

ρ (μα) =

(
Q

Q− 1

)2

(μα − μ)2 , μα ≥ μ =
1

Q
.
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Greenacre (1988) suggests to consider as total inertia the sum of the re-evaluated eigenvalues

and consider as percentage of explained inertia the ratio ρ(μα)∑
α ρ(μα)

. This results in a dramatic

re-evaluation of the relative importance of the first eigenvalues. On the opposite, Greenacre
bases his arguments on the unusefulness to take into account the diagonal block matrices and
the utility to limit attention only to the total off-diagonal inertia of the table, that is the sum
of squared (non-re-evaluated) eigenvalues minus the diagonal inertia: that is

Q

Q− 1

⎛⎝ ∑
μα>1/Q

μ2α − J −Q

Q2

⎞⎠ .

Experiments show that the Greenacre’s reevaluation is always limited to a share of the total
inertia of Burt’s table even by taking into account all the eigenvalues larger than the mean.

An alternative is proposed by Ben Ammou and Saporta (1998, 2003): they suggest to
estimate the significance of the eigenvalues of MCA according to their distribution. If the

characters are independent,
∑J−Q

β=1 μβ = J−Q
Q and Sμ2 =

∑J−Q
β=1 μ

2
β = J−Q

Q2 +
∑

i �=j φ
2

ij

Q2 with

n..φ
2
ij ≈ χ2

(li−1)(lj−1) , thus,

E[n..φ
2
ij ] = E[χ2

ij ] = (li − 1)(lj − 1)

so the expectation of the variance S2
μ of the eigenvalues is

σ2 = E[S2
μ] =

1

n..Q2(J −Q)

∑
i �=j

(li − 1)(lj − 1).

Roughly, one may assume that the interval 1
Q ±2σ should contain about 95% of the eigenvalues.

Indeed, since the kurtosis of the set of eigenvalues is lower than for a normal distribution, the
actual proportion is larger than 95%.

2.3 Joint Correspondence Analysis

Greenacre (1988) criticizes MCA approach since it is not a natural generalization of SCA and
proposes his Joint Correspondence Analysis (JCA) as its natural generalization. Moreover, in
MCA no justification exist for fitting the diagonal subtables B which contribute the term n(J−Q)
to the total variation. A more natural measure of total variation is the sum

∑∑
q �=s χ

2
qs. This

suggests an alternative generalization of correspondence analysis which fits only the off-diagonal
contingency tables, analogous to factor analysis where values on the diagonal of the covariance
or correlation matrix are of no direct interest.’

Indeed, the proposed redefinition of the total variation, by removing the diagonal block-
matrices, would fix an important bias due to the application to the Burt’s table of the chi-square
metrics, as the diagonal structure of the diagonal block-matrices represents a very high deviation
from the expected values, that MCA analyzes as if it were a true deviation. On this basis, on
the opposite to the current use, this kind of analysis is not really suitable.

So, Greenacre (1988) proposes his Joint Correspondence Analysis (JCA) as a weighed least-
squares approximation aiming at minimizing

n−1
Q∑
i=1

i−1∑
j=1

‖Nij −Hij‖2ij , (5)

instead of (4) with the corresponding χ2
J =

∑Q
i=1

∑i−1
j=1 χ

2
ij , sum of the chi-squares of all off-

diagonal tables, that unfortunately may not be checked for significance.
In order to get the solution, he proposes an alternating least-squares algorithm, based on the

reformulation of (5) as follows:

n−1
Q∑
i=1

i−1∑
j=1

‖Nij −Hij‖2ij = n−1
Q∑
i=1

i−1∑
j=1

∥∥Nij − n �ri �rj
′ − Lij

∥∥2
ij

(6)
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with �ri the diagonal of the i-th block-diagonal matrix. Calling H and L the supermatrices
gathering the Hij and Lij respectively, Greenacre (1988) states the equivalence of the rank-K
solution of L which satisfies the normal equations in the minimization of the second term of (6)
with the rank-(K+1) matrix H = �r �r ′+L which satisfies minimizing (5), with �r the supervector
gathering the Q vectors �ri.

The matrix approximation L of rank K is of the form L = nDXDβX
′D, where the J ×K

matrix X is normalized as X ′DX = QI, with D = diag(�r). The matrix X of parameters
has rows corresponding to the categories of the variables and columns corresponding to the
dimensions of the solution, that must be chosen in advance. The diagonal matrix Dβ contains
a scale parameter for each dimension. This form of L and the normalization conditions are
chosen to generalize the bivariate case (2). The parameter matrix X is partitioned row-wise
according to the variables as X1, · · · , XQ, where Xq is Jq ×K, so that the submatrices of L are
Lqs = nDqXqDβX

′
sDs. There are also inherent centering constraints on X of the form X ′r = 0

due to the orthogonality with the dimension defined by the trivial solution. It is evident that
the dimension of the solution must be chosen in advance.

Thus Greenacre (1988) proposes the approximate reconstruction of the whole matrix B −
n �r �r ′, namely

B − n �r �r ′ ≈ nDXDβX
′D + C,

where C is a block diagonal matrix with submatrices Cqq, q = 1, ..., Q down the diagonal
and zeros elsewhere. Here, each Cqq is composed by dummy parameters which effectively allow
perfect fitting of the submatrices on the diagonal of B−n �r �r ′, thereby eliminating their influence
on the model of interest. The minimization of

B − n �r �r ′ = 2n−1
Q∑
i=1

i−1∑
j=1

∥∥Nij − n �ri �rj
′ − Lij

∥∥2
ij

+ n−1
Q∑

k=1

∥∥Nkk − n �rk �rk
′ − Lkk − Ckk

∥∥2
k
.

(7)

is equivalent to minimizing (6) because the latter set of terms in (7) can always be made zero
by setting Cii = Nii − n �ri �ri

′ − Lii.
The algorithm proposed by Greenacre (1988) to minimize (7) can be performed iteratively

by alternating between the variables in C and those in X and Dβ as follows:

1. fix the dimension K of the solution.

2. initiate the algorithm with an analysis of the full Burt matrix B, that is

B − n �r �r ′ ≈ nDXDβX
′D. (8)

3. limiting attention to the first K dimensions, say the first K columns of X �x(1), · · · , �x(K),
(8) can be rewritten as

B − n �r �r ′ ≈
K∑
k=1

nβkD�x(k)�x
′
(k)D.

so that, if all quantities except the βk (k = 1,· · · , K) are regarded as fixed, the problem
reduces to a simple weighted least-squares regression (see Greenacre, 1988, for further
details).

4. Keeping X and Dβ fixed, set

Cii = Nii − n �ri �ri
′ − nDiXiDβX

′
iDi (i = 1, · · · , Q).
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5. Keeping C fixed, minimize with respect to X and Dβ : this is achieved by performing a
correspondence analysis on the table B∗ = B − C, that is the Burt matrix with modified
submatrices on its diagonal, setting X equal to the firstK vectors of optimal row or column
parameters and the diagonal of Dβ equal to the square roots of the firstK principal inertias
respectively.

6. Iterate the last two steps until convergence.

In the special case Q = 2, where the problem reduces to fitting the single off-diagonal subma-
trix N12, the initial solution described above is optimal and provides the simple correspondence
analysis of N = N12 exactly. N = N12 exactly.

3 An Application

To show in detail the different behavior of the different correspondence analyses, we refer to
a data set taken from Nardi (2007), consisting in 2000 words taken from four different kind
of periodic reviews (Childish (TC), Review (TR), Divulgation (TD), and Scientific Summary
(TS)), classified according to their grammatical kind (Verb (WV), Noun (WN), and Adjective
(WA)) and the number of internal layers (Two- (L2), Three- (L3), and Four and more layers
(L4)), as a measure of the word complexity.

Table 1: Burt’s table of the words’ type example.
L2 L3 L4 WN WV WA TC TR TD TS

L2 1512 0 0 788 483 241 433 385 399 295
L3 0 375 0 203 23 149 64 82 86 143
L4 0 0 113 62 9 42 3 29 21 60

WN 788 203 62 1053 0 0 229 284 273 267
WV 483 23 9 0 515 0 174 133 125 83
WA 241 149 42 0 0 432 97 79 108 148

TC 433 64 3 229 174 97 500 0 0 0
TR 385 82 29 284 133 79 0 496 0 0
TD 399 86 21 273 125 108 0 0 506 0
TS 295 143 60 267 83 148 0 0 0 498

L2 L3 L4 WN WV WA TC TR TD TS

In Table 1 the Burt’s table that results by crossing the three characters is reported. In Table 2
are represented the first results of the SCAs of the three contingency data tables, crossing the
three characters two by two, limited to the first two eigenvalues, namely, the eigenvalues, the per-
centage of corresponding inertia, and the p-value associated to the chi-square calculated for the
corresponding one-dimensional reconstruction, that in this case is identical to the Malinvaud’s
test, since each solution is 2-dimensional.

Table 2: SCA of the three contingency data tables of the three characters two by two. In the
columns, the eigenvalues, the percentage of inertia, and the p-value of the chi-square associated
to the factors.

words vs. levels publications vs. words publications vs. levels
N. eigen % p-value eigen % p-value eigen % p-value
1 .0925 99.98 .0000 .0253 80.53 .0000 .0619 98.82 .0000
2 .0000 0.02 .8625 .0061 19.47 .0022 .0007 1.18 .4771
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In two cases, the chi-squares test that the second factor has no real meaning, since the p-
value is larger than 5%, whereas for the case of the table crossing the type of publication and
the kind of words the second factor is also significant. In Figure 1 the results of the three SCAs
are represented too: it must be pointed out that the vertical position of the items is significant
only for the second graphic. Indeed, the inspection of this factor plane shows an arch pattern
due to a Guttman effect (Guttman, 1941; Camiz, 2005).

Figure 1: Words’ type example: The pair of characters levels on the three two-way SCAs: (a)
Words vs. Levels; (b) Publications vs. Words; (c) Publications vs. Levels.

Running MCA, the pattern of eigenvalues is represented in Table 3, in which are reported
the singular values of Z, their percentage to their total (that equals J−Q

Q = 2.33), the cumulate
percentage, the eigenvalues of the Burt’s matrix, corresponding to the explained inertia, and the
cumulate inertia.

Table 3: MCA singular values, percentage to the total and cumulate percentage, eigenvalues, and
cumulate inertia of the Burt’s table of words’ type example.

Number Singular value Percentage Cumulate % Eigenvalue Cumulate inertia

1 0.4896 20.98 20.98 0.239688 0.239688
2 0.3640 15.60 36.58 0.132472 0.372160
3 0.3434 14.72 51.30 0.117930 0.490090
4 0.3300 14.14 65.44 0.108885 0.598975
5 0.3084 13.22 78.66 0.095100 0.694076
6 0.2728 11.69 90.35 0.074431 0.768507
7 0.2252 9.65 100.00 0.050713 0.819220

Indeed, according to both Benzécri (1979) and Greenacre (1988), only three singular values
are larger than 1/Q = 1/3, so that the re-evaluations, reported in Table 4, are referenced to only
three dimensions. In both cases, the first dimension re-evaluated inertia is by far larger than
the others.
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Table 4: Inertia re-evaluation according to both Benzécri (1979) and Greenacre (1988) of words’
type example.

Benzécri’s Re-evaluation Greenacre’s Re-evaluation
Number Inertia % Cum.% Inertia % Cum.%

1 0.0549 95.91 95.91 0.2344 88.36 88.36
2 0.0021 3.69 99.60 0.0460 3.40 91.76
3 0.0002 0.40 100.00 0.0151 0.37 92.13

Total 0.0572 100.00 0.2954 92.13

If we apply the Ben Ammou and Saporta (1998, 2003) estimation of the average singular
value distribution under independence, we find that the standard deviation is σ = 0.0159364, so
that the confidence interval at 95% level is (0.30146 < λ < 0.36521).

Figure 2: Words’ type example: representation of the three-characters levels on the plane spanned
by the first two factors: (a) MCA; (b) JCA.

As a consequence, only the first singular value is outside the confidence interval and should
be considered significant. As a matter of facts, the second one is very close to the threshold
(0.3640): this is consistent with the fact that one of the 2-dimensional tables has a significant
second eigenvalue.

3304



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 5: Original two-way contingency tables of words’ type example and their reconstruction
according to the first dimension of SCAs, MCA, and JCA, with the corresponding cumulate
absolute residuals.

Original Burt’s Matrix

WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 433 385 399 295 WN 229 284 273 267
L3 203 23 149 L3 64 82 86 143 WV 174 133 125 83
L4 62 9 42 L4 3 29 21 60 WA 97 79 108 148

SCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 788 483 241 L2 435 382 400 296 WN 253 257 267 276
L3 204 23 149 L3 60 89 85 141 WV 165 144 127 79
L4 61 9 42 L4 5 25 22 61 WA 82 96 112 142

SCA cumulate absolute residuals

2 107 2210

MCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 770 559 183 L2 492 409 401 211 WN 249 257 264 283
L3 216 -24 183 L3 13 69 82 211 WV 219 155 145 -3
L4 67 -20 66 L4 -5 18 23 76 WA 32 84 97 219

MCA cumulate absolute residuals

14440 18972 21183

JCA First Layer

WN WV WA TC TR TD TS TC TR TD TS

L2 783 484 245 L2 435 391 393 293 WN 259 260 266 269
L3 207 29 139 L3 53 82 87 153 WV 160 136 136 82
L4 63 2 48 L4 12 24 25 52 WA 81 100 104 147

JCA cumulate absolute residuals

280 488 2570

Let us look now at the one-dimensional reconstruction, as resulting by the SCAs of the three
individual tables, by the MCA, and by Greenacre’s JCA as reported in Table 5. The comparison
of the SCA one-dimensional solutions with the original tables shows that the amount of the
cumulate absolute residuals is in good agreement with the quality of the solution, as represented
by the corresponding chi-square.

Table 6: Absolute residuals of the reduced dimensional reconstructions of both the Burt’s table
and the two-way off-diagonal ones according to MCA, reevaluated MCA and JCA respectively:
to 0 correspond the deviations from independence.

MCA MCA reeval. JCA
Dim total Off-diag. total Off-diag. total Off-diag.

0 8906 953 8906 953 8906 953
1 7557 1044 6879 308 6629 240
2 7378 1537 6588 236 6206 145
3 7089 1813 6510 215 5836 18
4 5949 1572
5 3675 977
6 2335 729
7 0 0
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For this reason, the low quality of the reconstruction of the table crossing kind of words with
the type of publications depends on the significance of the second dimension of the SCA of this
table. At first glance, it is evident the high difference in the cumulate absolute residuals of MCA
in respect to the other solutions, that is an important sign of the limits of MCA in respect to
JCA. Indeed, the quality of JCA one-dimensional reconstruction is in all cases acceptable, so
that it is possible to observe a synthetical graphical representation of the three tables that is
realistic. On the opposite, the MCA reconstruction is dramatically bad: in Table 6 are reported
the cumulate absolute residuals of reconstructions of both MCA and JCA, both for the whole
Burt’s table and for the three off-diagonal two-way tables. The residuals for 0-dimension are
the deviations from independence and the following are reported for all the allowed dimensions:
7 = J−Q forMCA and 3 for JCA, that corresponds to the number of singular values of the Burt’s
table larger than the mean. Looking at the table, we may notice a continuous decrease of the
total residuals in both analyses, with a perfect fit for the total reconstruction of MCA, decrease
that is somehow slower for JCA. On the opposite, the off-diagonal reconstruction of JCA is fast
and effective, with the 3-dimensional solution nearly perfect, whereas the reconstruction of MCA
follows a very different pattern. Indeed, the off-diagonal residuals increase progressively, instead
of diminishing, until the average eigenvalue, then lower, but improving the reconstruction in
respect to the deviation from independence only with the last two dimensions.

To graphically study the results, we can now compare the 2-dimensional graphics obtained
by the three SCAs, shown in Figure 1, with those obtained by both MCA and JCA, shown in
Figure 2. The position of the levels of each character are represented on the plane spanned by
the first two factors. Considering also that the second dimension is limited in significance, we
may note that both MCA and JCA factor planes represent a good compromise among the three
2-dimensional graphics. The reciprocal positions of the items are not so different among MCA
and JCA: only WV and TS, are more shifted and their position on JCA plane seemsbetter
reflect their relation with the other levels.

4 Conclusion

This study started with the aim to understand to what extent the JCA (Greenacre, 1988) could
be of help in identifying the true dimension of an analysis concerning a set of qualitative data.
In this sense, the confidence interval proposed by Ben Ammou and Saporta (1998, 2003) seems a
useful answer to this problem, in agreement with the most one-dimensional solution of the SCAs
applied to the two-way tables of the first application. During the study, the problem of the
data reconstruction not only showed that MCA is bad in reconstructing the data table, due to
the inflation in the number of eigenelements, but also that the re-evaluations proposed by both
Benzécri (1979) and Greenacre (2006) do not take into account the fact that the reconstruction
of the two-way off-diagonal tables is for the most reduced-dimensional solutions worst than
the initial independence table. To get closer to the daily use of the graphics, as a help for the
description and the interpretation of the data, the higher homogeneity of the ranges of the various
characters on factor planes of JCA improves the interpretation ability of the graphics themselves.
It is very strange that, despite the number of studies developed on MCA, no trace results
in literature of the serious drawbacks found in MCA, nor Greenacre (1988) and the followers
(?Vermunt and Anderson, 2005; Greenacre, 2006) quote their important improvement. Thus,
JCA seems a most promising development and its properties deserve some further deepening.
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Rio de Janeiro, of which both authors are the scientific responsible. The first author was also
granted by his Faculty of belonging, the Facoltà d’Architettura ValleGiulia of Sapienza and
FAPERJ of Rio de Janeiro. All institutions grants are gratefully acknowledged.

3306



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

References

Abdi, H. (2007). Singular Value Decomposition (SV D) and Generalized Singular Value De-
composition (GSV D). In: N. Salkind (Ed.), Encyclopedia of Measurement and Statistics.
Thousand Oaks, CA: Sage.

Ben Ammou, S., Saporta G. (1998). Sur la normalité asymptotique des valeurs propres en ACM
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