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ABSTRACT

The high school timetabling is a classical problem and has many combinatorial variations.
It is NP-Complete and since the use of exact methods for this problem is restricted, heuristics are
usually employed. This paper applies three Iterated Local Search (ILS) algorithms which includes
two newly proposed neighborhood operators to heuristically solve a benchmark of the problem
from literature. This benchmark has seven instances and the three largest ones are open. The results
obtained by our algorithms have shown that these methods are effective and efficient to solve the
problem, as they were capable to find optimal solutions for all instances and it helps to prove (using
pre-computed lower bounds) the optimality for the open instances.

KEYWORDS. High School Timetabling Problem, Iterated Local Search, Neighborhood
Operators.
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1. Introduction
The high school timetabling problem (HSTP) (SCHAERF, 1999; PILLAY, 2010) is a hard

combinatorial optimization problem and taking into account the computational complexity theory,
it is NP-Complete (EVEN et al., 1975). Besides the original, already complicating constraints, real
cases can include a multitude of different ones, as those collected in (POST et al., 2012). As the
best known algorithms to solve the problem to optimality are exponential time, their applicability to
solve real instances of the problem, become impracticable due to the large amount of computational
time required. For this reason, the problem is tackled by heuristic methods. Such methods do not
guarantee to solve the problem to optimality, but are capable to find good solutions in a feasible
computational time.

The most common methods used at the literature to solve the problem are: Genetic
Algorithms (RAGHAVJEE; PILLAY, 2010); Simulated Annealing (BRITO et al., 2012); Tabu
Search (SANTOS et al., 2005); Greedy Randomized Adaptive Search Procedures (SOUZA et al.,
2003); Variable Neighborhood Search (BRITO et al., 2012) and Iterated Local Search (SAVINIEC;
CONSTANTINO, 2012).

But when a solution of the HSTP is found by a heuristic method, an important question
arises about its quality. How much is the solution found far from the optimal solution?

This paper proposes three algorithms based on the ILS metaheuristic to solve the HSTP.
The key component of these heuristic methods lies on the use of two powerful neighborhood
operators. These algorithms are applied to solve a well known benchmark data set of the high
school timetabling problem (SOUZA et al., 2003) and the results are compared with the lower
bounds known for these instances (SANTOS et al., 2012).

The paper is organized as follows: Section 2 defines the problem. Section 3 explains the
solution approach. Section 4 reports the obtained results and section 5 provides a summary and
future works.

2. Problem definition
The HSTP considered in this paper (SOUZA et al., 2003) is based on Brazilian high

schools. There is a set P = {p|1 ≤ p ≤ np, p ∈ N} of teachers who teach a set T = {t|1 ≤ t ≤
nt, t ∈ N} of classes at school in a given shift, during a set D = {d|1 ≤ d ≤ nd, d ∈ N} of days,
with each day composed by a set H = {h|1 ≤ h ≤ nh, h ∈ N} of periods. Classes are disjoint
groups of students having the same subjects and no idle time periods during the week, and each
subject of a class is taught by only one teacher. Lessons between teachers and classes are previous
defined by the school. Classrooms are predefined and not considered in the scheduling. Most of
the teachers are not full time at school, thus teachers’ availability have to be considered and their
workload have to be concentrated in a minimum number of days during the week. In this way, an
instance of the problem is according to definition 2.1.

Definition 2.1 (HSTP instance) An instance of the HSTP is the data entry to the timetable
construction process in a given shift and it is represented by the following sets:

• A set L = {〈t, p, θ, λ, µ〉|t ∈ T, p ∈ P, θ ∈ N, λ ∈ N e µ ∈ N} of quintuples, named
as lessons requirement set. Where θ is the number of lessons, λ is the maximum number
of permitted lessons per day and µ is the minimum number of double lessons requested by
teacher p with class t.

• A set U = {〈p, d, h〉|p ∈ P, d ∈ D, h ∈ H} of triples, named as set of teachers’
unavailable periods. Where exists a triple 〈p, d, h〉 if teacher p is unavailable at period h
of day d.

Then, the problem consists in the scheduling of a weekly timetable Z, composed by five
days with five periods each, for the lessons in L, satisfying the hard constraints (definition 2.2) and
minimizing the soft constraints (definition 2.3).
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Definition 2.2 (Hard constraints) The hard constraints are represented by the set A = {ai|1 ≤
i ≤ 5} of constraints:

a1 : every θ lessons required for class t and teacher p must be scheduled;
a2 : a class must attend a lesson with only one teacher by period;
a3 : a teacher must teach only one class by period;
a4 : teachers must not be scheduled in periods they are not available;
a5 : a class t must not be scheduled to attend more than λ lessons with a same
teacher p per day.

Definition 2.3 (Soft constraints) The soft constraints are represented by the set B = {bj |1 ≤ j ≤
3} of constraints:

b1 : the number µ of double lessons requested by teacher p with class t has to be
attended;
b2 : idle times in the scheduling of teachers should be avoided;
b3 : the scheduling for each teacher should encompass the least possible number
of days.

3. Heuristic approach
This section discusses some fundamental concepts for building heuristic approaches and

defines the proposed approach to solve the HSTP. In the following, we present each component that
composes our approach: solution representation structure (section 3.2), objective function (section
3.3), the heuristic used to build initial solutions (section 3.4), the local search technique applied
(section 3.5), the neighborhood operators (section 3.6) and the ILS algorithms employed to solve
the problem (section 3.7).

3.1. Concepts
On the context of combinatorial optimization (CO) problems, all possible solutions for

a given instance of a problem, feasible or not, define the solution (or search) space S, and each
solution in S can be seen as a candidate solution. Thus, solving a CO problem requires to formulate
it as a maximization or minimization problem. In this type of formulation there is an objective
function f : S → R and the problem consists in finding solutions that maximize or minimize f .

On the context of the high school timetabling, the problem is generally formulated as
minimization and f is measured by weighting the number of violations for each constraint of the
problem and the aim is to satisfy the hard constraints and minimize the soft constraints. Then, to
solve the problem, one has to find a solution Z∗ ∈ S with minimum objective function, that is,
f(Z∗) ≤ f(Z), ∀Z ∈ S, where Z∗ is called global minimum in S and the set S∗ ⊆ S of all
solutions Z∗ is the set of global minimum.

A powerful class of algorithms to solve CO problems, in which no polynomial time
algorithm is known, are heuristic algorithms based on the concept of local search.

A local search heuristic starts from an initial solution Z0 and iteratively replaces the
current solution Z by a better solution Z ′ in an appropriately defined neighborhood N(Z) of the
current solution, until no more improvements are possible and the heuristic gets stuck in a local
minimum.

Neighborhoods are generated by neighborhood operators (definition 3.1) and they enable
to define the concept of local minimum (definition 3.2).

Definition 3.1 (Neighborhood operator) A neighborhood operator is a function N : S → P (S)
that assigns to every solution Z ∈ S a set of neighbors N(Z) ⊆ S. P (S) is the power set of S and
N(Z) is called neighborhood of Z.

Definition 3.2 (Local minimum) A local minimum solution with respect to a neighborhood
operator N is a solution Z∗′, such that ∀Z ∈ N(Z∗′)⇒ f(Z∗′) ≤ f(Z).
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3.2. Solution representation
A solution of the HSTP is represented according to definition 3.3.

Definition 3.3 (HSTP solution) A HSTP solution is stored in a non-negative integer three-
dimensional matrix Z|T |×|D|×|H|, where zt,d,h ∈ {1, 2, . . . , np} stores the teacher scheduled to
teach for class t on period h of day d.

Note that using this structure, constraints a1 and a2 are automatically satisfied and they
are not included on the objective function.

3.3. Objective function
In order to solve the HSTP, it is treated as an optimization problem in which an objective

function f : S → R has to be minimized. The objective function f associates each solution Z
in the solution space S to a real number and this is defined to measure the violation degree on the
HSTP constraints. Thus, a timetable solution Z is evaluated according to the objective function in
definition 3.4.
Definition 3.4 (Objective function) A HSTP solution Z is evaluated by the following function:

f(Z) = fA(Z) + fB(Z) (1)

Such that:

fA(Z) =

5∑
i=3

αai × βai (2)

fB(Z) =

3∑
j=1

αbj × βbj (3)

Where equations 2 and 3, respectively, measure the feasibility and quality of a timetable solution
and the weight αai (resp. αbj ) reflects the relative importance of minimizing the amount of violation
βai (resp. βbj ) at constraint ai ∈ A (resp. bj ∈ B).

From definition 3.4 a timetable is feasible if fA(Z) = 0 and the variables βai and βbj are
computed as below.

βa3 =
∑
p∈P

∑
d∈D

∑
h∈H

(πp,d,h−1), ∀(πp,d,h > 1). Where πp,d,h is the total number of lessons

allocated for teacher p on period h of day d;
βa4 =

∑
p∈P

∑
d∈D

∑
h∈H

ρp,d,h. Where ρp,d,h = 1 if teacher p has been scheduled to teach at

an unavailable period h on day d, and ρp,d,h = 0 otherwise;

βa5 =
∑
t∈T

∑
p∈P

∑
d∈D

(σt,p,d − λt,p), ∀(σt,p,d > λt,p). Where σt,p,d is the total number of

lessons allocated for class t with teacher p on day d and λt,p is the maximum of permitted lessons
per day from definition 2.1;

βb1 =
∑
t∈T

∑
p∈P

(µt,p − φt,p), ∀(µt,p > φt,p). Where µt,p is the minimum number of

double lessons requested by teacher p with class t (definition 2.1) and φt,p is the effective number
of allocated double lessons;

βb2 =
∑
p∈P

∑
d∈D

ηp,d. Where ηp,d is the number of idle times at the agenda of teacher p on

day d. For example, if a teacher has been scheduled to teach at the first and fourth periods and is
free at the second and third ones, then he has two idle times on this day;
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βb3 =
∑
p∈P

χp. Where χp is the total number of scheduled days for teacher p on the

timetable.

3.4. Algorithm for building initial solutions
In this work, initial solutions of the HSTP are constructed by means of a randomized

algorithm (see algorithm 3.1). This algorithm gets the lessons requirement set L from definition 2.1
as input and builds an initial solution by selecting and scheduling lessons randomly.

Algorithm 3.1 Algorithm for building initial solutions
GENERATE-RANDOM-SOLUTION(L)

1 Initialize Z
2 for each e ∈ L do
3 t = e.t
4 p = e.p
5 NumberOfLessons = e.θ
6 while NumberOfLessons > 0 do
7 Put p in a randomly selected free cell zt,d,h ∈ Z
8 NumberOfLessons = NumberOfLessons− 1
9 return Z

3.5. Local search
In summary, for CO problems, given an initial solutionZ0 as input, a local search heuristic

moves from Z0 to a local minimum Z ′ by exploring neighborhoods. At the literature, the most used
techniques to perform local search are: best improvement and first improvement (HANSEN et al.,
2010):
Best improvement: the heuristic start at an initial solution Z ′ = Z0, and at each iteration, replaces

Z ′ by Z = min{Z ′′ ∈ N(Z ′)} while f(Z) < f(Z ′). This technique explores the whole
neighborhood and moves to the best solution.

First improvement: this technique is an alternative to the first one when the neighborhood is large
to be entirely explored. This is similar to the first, but at each iteration it moves to the first
solution Zi ∈ N(Z ′) found, if it improves the current solution Z ′.

In this paper the first improvement technique is employed as local search (algorithm 3.2).

Algorithm 3.2 First improvement heuristic
FIH(Z0, N)

1 Z = Z0

2 repeat
3 Z′ = Z
4 i = 0
5 repeat
6 i = i+ 1
7 Z = min{Z,Zi}, Zi ∈ N(Z′)
8 until (f(Z) < f(Z′) or i = |N(Z′)|)
9 until (f(Z) ≥ f(Z′))

10 return Z′

3.6. Neighborhood operators
Neighborhood operators are the key ingredient to develop powerful local search

algorithms. In special, some researches as (DELL’AMICO; TRUBIAN, 1993; OSOGAMI; IMAI,
2000) have demonstrated, for some CO problems, that it is possible to define neighborhood
operators that reduce the search space. Such operators exclude out of the search process, a large set
of non-feasible solutions and the local search algorithm can efficiently search the restricted solution
space.

In this paper, two neighborhood operators called MT and TQ are employed. These
operators exclude out of the search process a large set of undesirable solutions.
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3.6.1. Matching operator

The matching operator (MT), definition 3.5, is based on the assignment problem (AP). It is
adapted from the technique that heuristically employs successive AP’s to solve the nurse scheduling
problem (CONSTANTINO et al., 2009).

Definition 3.5 (Matching operator) Lets:

• Z a timetable of the HSTP;
• ∆Pt ⊆ P the set of teachers who teach for a class t;
• ∆Zt = {ztdh ∈ ∆Pt} the multiset defined by all lessons of the class t at the timetable Z;
• Ut = {Y ∈ P (∆Zt)|Y = ∆Pt};
• Ŷ = {(ztdh)i|1 ≤ i ≤ |∆Pt|, i ∈ N} an indexed family, Ŷ ∈ Ut.

The MT operator is a function MT : S → P (S) that assigns for every solution Z ∈ S, a
neighborhood MT (Z) ⊆ S composed by solutions Z ′ ∈ S obtained from Z, by solving an AP
formulated on a set Ŷ ∈ Ut, given by:

Minimize
|Ŷ |∑
i=1

|Ŷ |∑
j=1

cijxij

Subject to
|Ŷ |∑
i=1

xij = 1 (1 ≤ j ≤ |Ŷ |) (4)

|Ŷ |∑
j=1

xij = 1 (1 ≤ i ≤ |Ŷ |) (5)

xij ∈ {0, 1} (1 ≤ i ≤ |Ŷ |, 1 ≤ j ≤ |Ŷ |) (6)

Where the cost matrix C|Ŷ |×|Ŷ | is computed as follows:

i) Z ′ = Z − Ŷ , subtract out of Z every cells in Ŷ ;
ii) cij is the objective function value f(Z ′) if teacher at index i in Ŷ is rescheduled to the period

where was teacher from index j;

After solving the AP, Z ′ is obtained by rescheduling the teachers from Ŷ , based on the response
variable xij .

To solve AP’s the polynomial time algorithm from (CARPANETO; TOTH, 1987) is
applied. Figure 1 illustrates an operation of MT, to simplify, in this example only constraint a3
with weight αa3 = 1 is taken into account. The MT operator is applied on lessons of class t3 at the
solution Z in figure 1(a), where:

• ∆Pt = {1, 2, 6, 9};
• ∆Zt = {2, 9, 1, 9, 6};

• Ŷ = {
t3d1h1︷︸︸︷

2 ,

t3d1h2︷︸︸︷
9 ,

t3d1h3︷︸︸︷
1 ,

t3d1h5︷︸︸︷
6 }.

Figures 1(b)-1(e) illustrate how to construct and solve an AP for the set Ŷ = {2, 9, 1, 6}
and figure 1(f) shows the obtained neighbor Z ′.

The MT operator has the following property:

Property 3.1 Given a solution Z of the HSTP, ∀Z ′ ∈MT (Z), f(Z ′) ≤ f(Z).

This property says that when MT is applied on a solutionZ, in the worst case, the neighbor
Z ′ will get f(Z ′) equal to the current solution Z.
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(a) Selection of a set Ŷ at a solutionZ, where
f(Z) = 2

(b) Moving out of Z the set Ŷ and getting

Z − Ŷ with f(Z − Ŷ ) = 1

(c) Cost matrix C|Ŷ |×|Ŷ | (d) Solving the AP

(e) Resulting assignment xij (f) The obtained neighbor Z′ using xij
information, with f(Z′) = 1

Figure 1. The matching operator

3.6.2. Torque operator

The torque operator1 (TQ), definition 3.6, is a generalization for the well known double
move operator (DM) generally used to solve the HSTP. The DM operator consists in swapping
two lessons of a class that are scheduled in two different periods. But when applying moves using
DM operator, new clashes between lessons can occur and a3 constraint is violated. Then, the TQ
operator is developed to prevent this disadvantage using the idea of Kempe chain interchanges
(LÜ et al., 2011).

Definition 3.6 (Torque operator) Lets: Z a solution of the HSTP; t ∈ T ; di, dj ∈ D, hi, hj ∈ H
with di 6= dj or hi 6= hj; and a graph G = (V,A) where:

• V = {vt|t ∈ T} is the vertex set of G formed by ordered pairs of lessons 〈ztdihi, ztdjhj〉,
such that:

〈ztdihi, ztdjhj〉 ∈ V ⇐⇒ ztdihi 6= ztdjhj (1 ≤ t ≤ |T |) (7)

• A = {〈u, v〉|u 6= v and u, v ∈ V } is the edge set of G and an edge exists between two
nodes u and v with attributes 〈iu, ju〉 and 〈iv, jv〉 respectively, if they satisfy the following
conditions:

1This is an analogy with the system of two parallel forces that act over a body and tend to cause rotation.
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iu = jv or ju = iv (8)

∀〈u, v〉, 〈u, k〉 ∈ A if iu = jv and iu = jk then v = k (9)

∀〈u, v〉, 〈u, k〉 ∈ A if ju = iv and ju = ik then v = k (10)

The TQ operator is a function TQ : S → P (S) that assigns to every solution Z ∈ S, a
neighborhood TQ(Z) ⊆ S, where Z ′ ∈ TQ(Z) is obtained from Z by swapping each pair of
lessons in a connected component of G.

(a) Solution Z without clashes at a3
constraint

(b) Graph G for di = dj = d1, hi = h1 and
hj = h2

(c) The neighbor Z′ without clashes in a3,
after swapping the lessons at the blue color
connected component

Figure 2. The torque operator

At the definition 3.6, condition 7 accepts in V , only nodes in which attributes i and j are
different. Condition 8 accepts in A, only the edges that connect nodes in which their opposite
attributes have equal values and conditions 9 and 10 impose that when swapping lessons in a
connected component, no more than one lesson of a teacher will be moved from one period to
another.

The TQ operator has the following property:

Property 3.2 Given a solution Z of the HSTP, ∀Z ′ ∈ TQ(Z), fa3(Z ′) ≤ fa3(Z).

This property says that when TQ is applied on a solution Z, the number of clashes βa3 , at
the new neighbor Z ′, will not be augmented. Figure 2 illustrates this operator.

3.7. ILS based algorithms to the HSTP
The proposed approach is composed by three algorithms based on the ILS metaheuristic

(LOURENÇO et al., 2003).

ILS-TQ: this ILS (algorithm 3.4) incorporates the first improvement technique (algorithm 3.2)
with TQ operator, as local search heuristic.

IMLS-MT-TQ: this algorithm (3.5) uses the idea of “heuristic composition”, two heuristics run
in sequence and the second starts from the local minimum found by the first one2. The

2We have named it as Iterated Multi Local Search (IMLS).
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two local search heuristics are based on the first improvement technique (algorithm 3.2).
The first heuristic explores the neighborhood MT (Z) randomly and the second heuristic
explores the neighborhood TQ(Z) in a deterministic way.

IMLS-TQ-MT: this algorithm is the previous one with the heuristic sequence in reverse order.

These three algorithms make use of the N-RANDOM-PERTURBATION procedure
(algorithm 3.3), that applies a random move by using the TQ operator to perform perturbation
and escape from local minimum.

Algorithm 3.3 Perturbation procedure
N-RANDOM-PERTURBATION(Z,N, n)

1 while (n > 0) do
2 Z = Random Z′ ∈ N(Z)
3 n = n− 1
4 return Z

Algorithm 3.4 ILS-TQ algorithm
ILS-TQ(Z0, tmax)

1 Z = FIH(Z0, TQ) // local search
2 Z ∗ = Z // best solution found
3 NotImproved = 0
4 repeat
5 Z = N-RANDOM-PERTURBATION(Z, TQ, 1)
6 Z = FIH(Z, TQ) // local search
7 if f(Z) < f(Z∗) then
8 NotImproved = 0
9 else

10 NotImproved = NotImproved + 1
11 if f(Z) ≤ f(Z∗) then // acceptance criterion
12 Z ∗ = Z
13 if NotImproved ≥ 3 then // if no improvement after three iterations
14 Z = Z ∗ // return to Z∗

15 NotImproved = 0
16 t = CPUTIME()
17 until (t > tmax or f(Z) = 0)
18 return Z∗

Algorithm 3.5 IMLS-MT-TQ algorithm
IMLS-MT-TQ(Z0, tmax)

1 Z = FIH-MT-TQ(Z0) // composite local search
2 Z ∗ = Z // best solution found
3 NotImproved = 0
4 repeat
5 Z = N-RANDOM-PERTURBATION(Z, TQ, 1)
6 Z = FIH-MT-TQ(Z) // composite local search
7 if f(Z) < f(Z∗) then
8 NotImproved = 0
9 else

10 NotImproved = NotImproved + 1
11 if f(Z) ≤ f(Z∗) then // acceptance criterion
12 Z ∗ = Z
13 if NotImproved ≥ 3 then // if no improvement after three iterations
14 Z = Z ∗ // return to Z∗

15 NotImproved = 0
16 t = CPUTIME()
17 until (t > tmax or f(Z) = 0)
18 return Z∗

3338



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

4. Experimental results

This section reports the experimental results of running the proposed algorithms on the
high school timetabling benchmark from (SOUZA et al., 2003)3. Table 1 presents the main
characteristics of the instances. Column sr shows the sparseness ratio (equation 11) for each
instance.

sr = 1−

|L|∑
i=1

θi + |U |

|P | × |D| × |H|
(11)

This expression measures how much a problem instance is constrained regarding to the
number of teachers’ non-available periods. Higher values indicate flexible problems while lower
values indicate more restrictive problems. This benchmark has seven instances and for the three
largest ones, the optimal solutions are not known, however, lower bounds were computed using an
extended Integer Linear Programming Formulation (SANTOS et al., 2012).

Table 1. Characteristics of instances
Instance |T | |P | |D| |H| Lessons Double Lessons sr

1 3 8 5 5 75 21 0,43
2 6 14 5 5 150 29 0,5
3 8 16 5 5 200 4 0,3
4 12 23 5 5 300 41* 0,18
5 13 31 5 5 325 71 0,58
6 14 30 5 5 350 63 0,52
7 20 33 5 5 500 84 0,39

* Researchers have printed 66 to this value in previous papers, but according
to the instance files from http://labic.ic.uff.br/Instance/ this value is 41.

The proposed approach was coded using MS Visual Basic 6. The experiment was
performed on Windows Server 2008-R2 running on the KVM virtual machine set to work with
30GB of RAM and 50 cores of a server with 4 CPU Intel Xeon E7-4860 (24MB of Cache -
2.26 GHz) with Linux CentOS 6 operating system. In this experiment 50 tests of 900 seconds
were carried out for each instance. The whole experiment was performed in three phases, at each
phase an algorithm was experimented by executing 50 simultaneous processes. The constraints
were penalized with the follow weights on the objective function: βa3 = 100.000, βa4 = 5.000,
βa5 = 100, βb1 = 1, βb2 = 3, βb3 = 9.

Table 2. Best results
Instance ILS-TQ IMLS-MT-TQ IMLS-TQ-MT LB TS IP

1 ∗ ∗ ∗ 202 ∗ ∗
2 ∗ ∗ ∗ 333 ∗ ∗
3 ∗ ∗ ∗ 423 ∗ ∗
4 ∗ ∗ ∗ 652 653 ∗
5 ∗ ∗ ∗ 762 766 764
6 ∗ ∗ ∗ 756 760 765
7 ∗ ∗ ∗ 1017 1029 1028

Figure 3 shows the statistical distribution of the solutions and table 2 the best solutions
found by the three algorithms. Column LB shows the lower bounds found by the cut and column
generation algorithm from (SANTOS et al., 2012). The distributions on the two boxplot graphics
are based on the concept of relative distance in definition 4.1. By this concept we compare the
results found by our algorithms with the lower bounds. For the open instances, 5 to 7, our algorithms
have reached the lower bounds and it helps to prove the optimality for these instances. In addition,
our algorithms have found optimal solutions for all instances and according to the boxplot in figure

3This benchmark can be downloaded from http://labic.ic.uff.br/Instance/.
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(a) By instance (b) By algorithm

Figure 3. Statistical distribution of solutions

3(b), they have statistical distribution of solutions that are very close to the optimal solutions, less
than 5% far from the optimum.

As additional information, columns TS4 and IP5 (table 2) show the best known results
found in previous studies for these instances. The “∗” symbol in cells of table 2 means that the
algorithm was able to reach the lower bound in column LB.

Definition 4.1 (Relative distance) Given an instance of the HSTP. Lets Z be an arbitrary solution
and Zbest the best known solution for this instance. The relative distance from Z to Zbest is denoted
by:

rd =
f(Z)

f(Zbest)
(12)

5. Conclusions and future works
In this paper we have proposed three ILS algorithms to solve the high school timetabling

benchmark from (SOUZA et al., 2003). These algorithms have shown to be effective and efficient to
solve the problem, as they were capable to find optimal solutions for all instances and the statistical
distribution of solutions are very close to the optimal solutions. In addition, it has helped to prove
the optimality for the three open instances.

The main contribution of this paper are twofold, it demonstrates the robustness of
two distinct approaches for HSTP, our heuristic methods and the Integer Linear Programming
Formulation from (SANTOS et al., 2012).

As future works we intend to test our algorithms with additional set of instances.
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