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ABSTRACT

In the Team Orienteering Problem (TOP), we are given geographically-scattered cus-
tomers associated with rewards. A fixed number of distance-constrained routes must be designed
to visit a subset of customers while maximizing the total profit. This problem is linked with
numerous applications in transportation and logistics, e.g. for customers selection, oil-field
exploitation, humanitarian relief, or military surveillance. We propose here new neighborhood
searches exploring an exponential number of solutions in pseudo-polynomial time. The search
is conducted on “exhaustive” solutions visiting all customers, while an efficient Select algorithm,
based on resource-constrained shortest paths, is repeatedly used for selecting the customers to be
serviced and evaluating the routes. Extensive computational experiments demonstrate the notable
contribution of these neighborhood structures inside a local search and iterated local search. The
simplest local search, stopping at the first local optimum, reaches an average gap of 0.09% on
classic TOP instances, matching or outperforming the current best metaheuristics.

KEYWORDS. Vehicle Routing, Team Orienteering, Local Search, Large Neighborhoods
Main areas: Logistics and Transportation, Combinatorial Optimization

RESUMO

No Team Orienteering Problem (TOP), os clientes geograficamente dispersos estão
associados a prêmios. Um número fixo de rotas com restrições de distância devem ser determinadas
para visitar um subconjunto de clientes, de modo a maximizar o prêmio total. Este problema
está relacionado com inúmeras aplicações em transporte e logística, por exemplo, seleção de
clientes, exploração de campos de petróleo, ajuda humanitária ou vigilância militar. Neste trabalho
são propostas novas vizinhanças que exploram um número exponencial de soluções em tempo
pseudo-polinomial. Esta busca é realizada de forma exaustiva, visitando todos os clientes da
solução, enquanto um algoritmo Select eficiente, baseado no caminho mais curto com restrições
de recursos, é usado repetidamente para selecionar os clientes a serem atendidos e avaliar as rotas.
Experimentos computacionais demonstram a notável contribuição destas estruturas de vizinhança
integradas em uma Busca Local e em uma heurística Iterated Local Search. A busca local simples,
parando no primeiro ótimo local, consegue obter um desvio médio de apenas 0,09% em instâncias
clássicas do TOP, igualando ou superando as melhores metaheurísticas da literatura.

PALAVRAS-CHAVE. Roteamento de Veículos, Team Orienteering, Busca Local
Áreas Principais: L&T- Logística e Transporte, OC - Otimização Combinatória.

3308



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

1 Introduction

Vehicle Routing Problems (VRP) with Profits seek to select a subset of customers, each
one being associated with a reward, and design at most m vehicle itineraries starting and ending
at a central depot to visit them. These problems have been the focus of extensive research, as
illustrated by the surveys of Feillet et al. (2005) and Vansteenwegen et al. (2010), because of their
difficulty and their numerous practical applications in logistics (Hemmelmayr et al., 2009; Tricoire
et al., 2010), manufacturing (Tang e Wang, 2006), robotics (Falcon et al., 2012), humanitarian relief
(Campbell et al., 2008) and military reconnaissance (Mufalli et al., 2012), among others.

Three main settings are usually considered in the vehicle routing literature: profit
maximization under distance constraints, called Team Orienteering Problem (TOP, Chao et al.
1996), maximization of profit minus travel costs under capacity constraints, called Capacitated
Profitable Tour Problem (CPTP, Archetti et al. 2009), and the so-called VRP with Private Fleet
and Common Carrier (VRPPFCC, Bolduc et al. 2008) in which customers can be delegated to an
external logistics provider, subject to a cost. For the sake of conciseness, the scope of this paper
will remain limited to the TOP. Still, the proposed methodology applies for the three problems.

To address the team-orienteering problem, we propose to conduct the search on an
“exhaustive” solution representation, which only specifies the assignment and sequencing of
all customers to vehicles. For each such exhaustive solution, a Select algorithm, based on a
Resource-Constrained Shortest Path is used to perform the optimal selection of customers and
evaluate the route costs. We then introduce a new Combined Local Search (CLS) working on
this solution representation. The resulting local search explores an exponential set of Prize-
Collecting VRP solutions, obtained from one standard VRP move combined with a exponential
possible combinations of insertions and removals of customers, in pseudo-polynomial time. The
contributions of this work are the following. 1) A new large neighborhood is introduced for the
TOP. 2) Pruning and re-optimization techniques are proposed to perform an efficient search. 3)
These neighborhoods are tested within two heuristic frameworks, a local-improvement procedure
and an iterated local search. 4) Even the simple local-improvement procedure built on this
neighborhood demonstrates outstanding performances on extensively-studied TOP benchmark
instances, matching or outperforming all current problem-tailored metaheuristics in the literature.

2 Problem statement and mathematical formulation

Let G = (V, E) be a complete undirected graph with |V| = n + 1 nodes. Node v0 ∈ V
represents a depot, where a fleet of m identical vehicles is based. The other nodes vi ∈ V\{v0},
for i ∈ {1, . . . , n}, represent the customers, characterized by a profit pi. Without loss of generality,
p0 = 0. Edges (i, j) ∈ E represent the possibility of traveling directly from a node vi ∈ V to
vj ∈ V for a distance/duration dij . The objective of the TOP is to find a set of |R| ≤ m or less
vehicle routes, i.e. cycle σ = (σ(1), . . . , σ(|σ|) ∈ R starting and ending at the depot such that each
customer is serviced at most one time. For any route, the sum of traveled distance must be smaller
than Dmax and the total collected prize over all routes must be maximized.

A mathematical formulation of the TOP is given in Equations (1-8). This model is based
on two families of binary variables, yik, designating the assignment of customer i to vehicle k by
the value 1 (and 0, otherwise; y0k = 1 signals vehicle k operates), and xijk, taking the value 1 when
vehicle k visits node vj immediately after node vi (i 6= j).

Maximize
n∑
i=0

m∑
k=1

piyik (1)

Subject to
m∑
k=1

yik ≤ 1 i = 1, . . . , n (2)
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m∑
k=1

y0k ≤ m (3)

n∑
i=0

n∑
j=0

dijxijk ≤ Dmax k = 1, . . . ,m (4)

n∑
j=0

xijk =
n∑
j=0

xjik = yik i = 0, . . . , n; k = 1, . . . ,m (5)

∑
vi∈S

∑
vj∈S

xijk ≤ |S| − 1 k = 1, . . . ,m;S ∈ V \{0}; |S| ≥ 2 (6)

yik ∈ {0, 1} i = 0, . . . , n; k = 1, . . . ,m (7)

xijk ∈ {0, 1} i = 0, . . . , n; j = 0, . . . , n; k = 1, . . . ,m (8)

Constraints (2) and (3) enforce, respectively, the assignment of each customer to a single
vehicle and the maximum number of vehicles operating out of the depot. Constraint (4) limits
the maximum duration of a route. Constraints (5) - (6) are related to the structure of the routes,
guaranteeing the selection of an adequate number of arcs entering into and exiting from each node
(depot and customers), and eliminating sub-tours.

3 Related literature

Prize collecting VRPs have been the subject of a well-developed literature since the
1980s. The three problems mentioned in the introduction are NP-hard. The current exact methods
(Boussier et al., 2007; Archetti et al., 2013) can solve some instances with up to 200 customers,
but mostly when the number of visited customers in the optimal solution remains rather small (less
than 30). Heuristics are currently the method of choice for larger problems.

TOP heuristics and metaheuristics have been the subject of a large attention in the past
years, perhaps due to the rapid availability of common benchmark instance (Chao et al., 1996).
A wide range of metaheuristic frameworks have been investigated, neighborhood-based methods
(Vidal et al., 2013) tending to be privileged over population-based search. Tang e Miller-Hooks
(2005) proposed a tabu search with adaptive memory, profiting from feasible and infeasible
solutions in the search process. Archetti et al. (2006) introduced a rich family of metaheuristics
based on tabu or variable neighborhood search. Ke et al. (2008) developed ant-colony optimization
techniques, and study four alternative, sequential, deterministic-concurrent, random-concurrent,
and simultaneous, approaches for constructing new solutions. Bouly et al. (2009) introduced a
hybrid GA based on giant-tour solution representation, which is hybridized later on with PSO in
Dang et al. (2011). Vansteenwegen et al. (2009) proposed a guided local search, and a path relinking
approach is presented in Souffriau et al. (2010). Finally, a multi-start simulated annealing method
is introduced in Lin (2013).

Several other VRP with profits have been addressed in the literature, notably the profitable
tour problem (Archetti e Speranza, 2008), the VRP with private fleet and common carrier (Potvin e
Naud, 2011; Stenger et al., 2012, among others), and the TOP with time windows (Labadie et al.,
2012; Lin e Yu, 2012, among others). Similarly to a wide majority of VRP publications, recent
research has been for the most part focused on finding more sophisticated metaheuristic strategies,
rather than improving the low-level neighborhood structures, which have been the same for many
years. The goal of our paper is to break with this common practice by introducing a new family of
combined neighborhoods. These neighborhoods can be subsequently applied in any metaheuristic
framework, in possible cooperation with existing neighborhood structures.
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4 Proposed neighborhoods

All the previously-mentioned efficient metaheuristics rely on local-search improvement
procedures to achieve high-quality solutions. The most commonly-used neighborhoods include
separate moves for changing the selection of customers with INSERT, REMOVE or REPLACE

moves, and changing the assignment and sequencing of customer visits with SWAP, RELOCATE,
2-OPT, 2-OPT* or CROSS with is equivalent to 4-OPT*. We refer to Feillet et al. (2005) and Vidal
et al. (2013) for a description of classic neighborhoods. However, neighborhoods which consider
separately the changes of selection and sequencing/assignment may overlook a wide range of simple
solution improvements. Especially, combined INSERT or REMOVE, in the same route, with a change
of sequencing in route r such as RELOCATE.

4.1 Implicit customer selection

In this paper, we introduce a new neighborhood of exponential-size which can be
searched in pseudo-polynomial time. Two main concepts are exploited: an exhaustive solution
representation, and an implicit selection of customers. Prize-collecting vehicle routing problems
indeed involve three families of decisions: a selection of customers to be visited, the assignment of
selected customers, and the sequencing of customers for each vehicle. In an exhaustive solution,
only the assignment to vehicles and sequencing of all customers are specified, without considering
whether they are selected or not. This representation is identical to a complete VRP solution. Some
routes may exceed the resource constraints, and some may not be profitable, e.g. off-centered
customers with small profits are included.

To retrieve a VRPP solution from an exhaustive solution, a Select algorithm based on a
resource-constrained shortest path is applied on each route. Select retrieves the optimal subsequence
of customers, fulfilling the resource constraints, while maximizing the profits. The rationale of
this overall methodology comes from the fact that sequences of non-activated deliveries will be
represented in the solution at promising places, and thus can become implicitly activated by the
Select procedure when a modification, e.g. sequence change in a local search, is operated.

For any route σ ∈ R, the selection subproblem is formulated as a resource-constrained
longest path on an auxiliary directed graphH = (V,A). This methodology is illustrated in Figure 1
for a exhaustive solution with two routes. V contains the |σ| nodes visited by the route. Each arc
(i, j) ∈ A for i < j is associated with a resource consumption dσ(i)σ(j), and each node i ∈ V
is associated with a profit pσ(i). The goal is to find a path in this graph, respecting the resource
constraint Dmax, and maximizing the total profit.

Figure 1: From an exhaustive solution to a CPTP solution

Even for an euclidean TOP, the resulting class of resource-constrained shortest path
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sub-problems is NP-hard. However, these problems can be solved efficiently by dynamic
programming (Irnich e Desaulniers, 2005). Define a label s = (sR, sP) as a couple (resource,profit).
To each node k, associate a set of labels Sk, starting with S1 = {(0, 0)} for the node associated to
the depot. For any i ∈ {1, . . . , |σ|−1}, build a set of labels S ′i+1 by considering any edge (j, i+ 1)
and extending all labels of j as in Equation (9).

S ′i+1 =
⋃

j|(j,i)∈A

⋃
sj∈Sj

(sR
j + dσ(j)σ(i), s

P
j + pσ(j))) (9)

Any infeasible labels s ∈ S ′i+1, such that sR + dσ(i+1)σ(0) > Dmax is pruned from S ′i+1.
Indeed, distances are supposed to satisfy the triangle inequality, thus the resource consumption to
return to v0 after σ(i + 1) is greater or equal than rσ(i+1)σ(0), leading to this stronger feasibility
bound. All dominated labels of S ′i+1, i.e. label (sR, sP) ∈ S ′i+1 such that there exists (s̄R, s̄P) ∈ S ′i+1

with sR ≥ s̄R and sP ≤ s̄P are finally removed to yield Si+1. The feasible label with the best profit
at node |σ| gives the final cost of the TOP route, denoted as ZTOP(σ). The resulting Select algorithm
is pseudo-polynomial, with a complexity of O(n2b), where b is an upper bound on the number of
labels per node. Yet in practice, during our experiments on a large variety of benchmark instances,
the number of labels remains usually very small, and never reached a value greater than 10.

4.2 Neighborhood search on the exhaustive solution

Building upon this exhaustive solution representation and the Select algorithm, we
propose a local search procedure considering large neighborhoods with an exponential number
of customer insertion and removals. This method applies classic VRP moves such as RELOCATE,
SWAP or 2-OPT on the exhaustive solution representation. Evaluating the profitability of any
such move requires to use the Select algorithm on each modified route to find the updated optimal
selection. As such, insertions and removals are implicitly managed during the selection process
instead of being explicitly considered by the local search, and any number of combined INSERT or
REMOVE moves can be operated.

In our implementation of this technique, we consider the standard VRP neighborhoods
2-OPT, 2-OPT*, RELOCATE, SWAP and K-CROSS, limited to sequences ofK ≤ 2 customers. Each
such move requires applying a maximum of two times (one for each route) the Select procedure.
Moves are considered in random order, any improvement being directly applied (first acceptance).
The method stops whenever all moves have been tried without success.

i d0,i di−1,i pi
1 15 – 10
2 25 30 15
3 15 20 15
4 15 20 10
5 20 25 12
6 15 10 15
7 20 15 15
8 25 15 12
9 25 20 15
10 15 35 15

Dmax = 100
d7,9 = 25

all other distances = +∞

σ D(σ) P (σ)
(3,4,5,6) 85 52
(7,9,10) 95 45
(1,2,3,4) 100 50
(6,7,8,9) 90 57

Figure 2: RELOCATE move on the exhaustive solution representation, and impact on the associated
VRPP solution

Figure 2 illustrates a simple RELOCATE move applied on the exhaustive solution
representation (top of the figure), and its possible impact on the associated VRPP solution (bottom
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of the figure). A RELOCATE of customer C6 before C7 on the exhaustive solution representation can
have a dramatic impact on the associated VRPP solution, since as a consequence of the RELOCATE,
the Select algorithm operates different choices, here a compound REMOVAL of C5 and C10 and
INSERT of C1 and C2 before C3. As a result, a feasible solution with higher profit can be attained.

4.3 Hierarchical objective and speed-up techniques

When only the primary problem objective Z = max
∑

σ∈R Z
TOP(σ) is considered, most

local-search moves on customers which are currently non-activated by Select have no impact on the
current cost. This leads a “staircase” aspect of the search space, which is usually not suitable for an
efficient search. To avoid this drawback and drive the non-activated customers towards promising
locations, the total distance of the current exhaustive solution is considered as a secondary objective
(Equation 10). The factor ω enables to scale the objectives. In our experiments, we considered
ω = 10−4, which sets up a hierarchy without involving numerical precision issues.

Z ′ = max
∑
σ∈R

ZSELECT(σ) + ω
∑
σ∈R

∑
i∈{1,...,|σ|−1}

dσ(i)σ(i+1) (10)

As a result, even if no improving move w.r.t. the primary TOP objective can be found from
an incumbent solution, the neighborhood search will re-arrange the deliveries to positions where
they are more likely to be activated at a further step. This may open the way to new improvements
of the main objective at a later stage, without requiring any solution deterioration.

In addition, solving from scratch each such resource-constrained shortest path leads
to computationally expensive move evaluations in O(n2b). Pseudo-quadratic complexity is not
acceptable in recent neighborhood-based heuristic searches which rely on a considerable number
of route evaluations. To reduce this complexity, we prune several edges in the shortest-path graph.
For a given integer h, only the arcs (i, j), with (i < j) following the condition of Equation (11)
are kept. The sparsification parameter h ∈ [0, n] represents a bound on the maximum consecutive
number of non-activated deliveries which can arise in a VRPP solution.

j < i+ h or i = 0 or j = |σ| (11)

As a consequence, only a limited number of non-activated deliveries can be located
between two consecutive selected deliveries to customers. The number of non-activated deliveries
located just after or just before a depot remains unlimited, thus guaranteeing the existence of a
feasible solution. This limitation enables to reduce the number of edges of the auxiliary graph
from O(n2) down to O(hn), and dramatically reduces the complexity of solving the underlying
resource-constrained shortest paths. Finally, to speed up further the resolution we rely on
bi-directional dynamic programming techniques (Righini e Salani, 2006) and keep in memory the
partial label trees generated during each move evaluation. These trees can subsequently be re-used
to evaluate closely related moves. Standard static move pruning techniques (granular search Toth
e Vigo 2003) are also exploited, and thus local-search moves between customers i and j are only
evaluated if j is among the |Γ| = 20 closest vertices to i.

5 Heuristic and metaheuristic framework

The contribution of this new neighborhood is assessed by extensive computational
experiments with two types of heuristics: a simple Multi-Start Local-Improvement (MS-LI)
procedure, and a Multi-Start Iterated Local Search (MS-ILS). The local-improvement procedure is
based on classic vehicle routing neighborhoods: 2-OPT, 2-OPT* as well as CROSS and K-CROSS
exchanges with K = 2. Moves are explored in random order, any improving move being directly
applied until no improvement can be found in the whole neighborhood, the resulting solution being
a local optimum of the proposed large neighborhood. The local-improvement procedure is repeated
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100 times from randomly generated initial solutions. The best of all local optima constitutes the
MS-LI solution.

MS-ILS, depicted in Algorithm 1, starts from a randomly generated initial solution, then
from each incumbent solution generates nC child solutions by applying a shaking operator and the
local-improvement procedure, the best child solution being taken as new incumbent solution for
the next iteration. As in Prins (2009), shaking consists in swapping two random deliveries on the
giant-tour solution representation which does not mention visits to the depot. A Split algorithm
is then applied to optimally insert the depots. The method is restarted nP times, each run being
terminated after nI consecutive iterations without improvement of the best solution. The overall
best solution is finally returned.

Algorithm 1 Multi-Start Iterated Local Search
1: for iR = 1 to nP do
2: sCURR ← getInitialSolution()
3: sBEST ← sCURR

4: iILS ← 0
5: while iILS < nI do
6: SCHILDREN ←
7: for iC = 1 to nC do
8: s←Shaking(sCURR)
9: s←Split(s)

10: SCHILDREN ←localImprovement(s)
11: sCURR ←bestElement(SCHILDREN)
12: if cost(sCURR) < cost(sBEST) then sBEST ← sCURR ; iILS = 0
13: else iILS = iILS + 1
14: return bestSolutionEver()

6 Experimental Analyses

The performance of these two heuristics built on our new compound neighborhoods is
assessed by means of extensive experiments on classic benchmark instances for the TOP of Chao
et al. (1996). The considered instances are classified into seven sets of instances, Sets 1 to 7, which
include respectively 32, 21, 33, 100, 66, 64 and 102 customers. Each instance set is declined
into individual instances with between 2 to 4 vehicles and different duration limits. We focus our
discussion on the larger sets, 4 to 7, since the proposed methods systematically reach the optimal
solutions on the smaller instances. In addition, instances for which all methods from the recent
literature find the optimal solutions have been excluded from the experiments, to only keep the 157
most difficult ones as in Souffriau et al. (2010)

After some preliminary tests, the parameters of MS-ILS have been set to (nP, nI, nC) =
(5, 10, 3) which allows to compare to other methods in similar CPU time while keeping a good
balance between restarts (nP) for diversity, and search intensity (nI and nC). The sparsification
parameter has been set to h = 3, a value which provides a good trade-off between quality of
solution and computational effort. In the following, our methods are compared to the best current
metaheuristics in the TOP literature:
• CGW : Tabu Search of Chao et al. (1996) – as reported by Tang e Miller-Hooks (2005)
• TMH : Tabu Search of Tang e Miller-Hooks (2005)
• GTF : Tabu Search with feasible strategy of Archetti et al. (2006)
• SVF : Slow variable neighborhood search of Archetti et al. (2006)
• ASe : Sequential Ant colony optimization of Ke et al. (2008)
• GLS : Guided Local Search of Vansteenwegen et al. (2009)
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• SVNS : Skewed Variable Neighborhood Sarch of Vansteenwegen e Souffriau (2009)
• SPR : Slow Path Relinking of Souffriau et al. (2010)
• MSA : Multi-Start Simulated Annealing of Lin (2013)

Table 1 compares the average results of MS-LI, MS-ILS with recent state-of-the-art
methods on Sets 4 to 7. In accordance with the current practice for this problem, the best solution
quality out of 10 independent runs is reported for each method and problem set. This quality is
expressed as a Gap (%) to the best profit ever found in the literature, averaged on all instances of
the same set. The average CPU time per instance, for each method, as well as the type of processor
is also reported. To further compare the performance of the methods on separate instances, Tables 2
and 3 display the detailed results of each method on the two largest sets. The previous best known
solutions (BKS) from the literature are indicated in the last column. Further detailed results on all
benchmark instances are available upon request.

Table 1: Summary of results on TOP benchmark instances
CGW TMH GTF SVF ASe GLS SVNS SPR MSA MS-ILS MS-LI

Set 4 Gap 4.36% 1.99% 0.48% 0.06% 0.30% 2.96% 1.46% 0.11% 0.06% 0.05% 0.09%
n=100 T(s) 796.70 105.30 22.50 11.40 32.00 37.10 36.70 367.40 81.00 301.54 76.72

Set 5 Gap 1.36% 1.38% 0.01% 0.03% 0.04% 2.39% 0.61% 0.05% 0.01% 0.01% 0.01%
n=66 T(s) 71.30 69.50 34.20 3.50 15.10 17.40 11.20 119.90 6.60 193.97 11.31
Set 6 Gap 0.37% 0.79% 0.04% 0.00% 0.00% 1.78% 0.52% 0.00% 0.00% 0.00% 0.00%
n=64 T(s) 45.70 66.30 8.70 4.30 14.10 16.10 9.00 89.60 1.40 138.25 6.86
Set 7 Gap 2.68% 1.15% 0.29% 0.06% 0.00% 3.07% 1.31% 0.04% 0.03% 0.00% 0.07%

n=102 T(s) 432.60 160.00 10.30 12.10 24.60 30.40 27.30 272.80 32.20 309.62 50.22
CPU SUN4/370 DECAlpha P4 2.8G P4 2.8G P4 3.0G P4 2.8G P4 2.8G Xe 2.5G C2 2.5G Xe 3.0G Xe 3.0G

These results demonstrate the good performance of both methods. For Sets 5 and 6, the
proposed methods attain a gap of less than +0.01%, while on the larger instances, gap values do not
exceed +0.09% for MS-LI and +0.05% for MS-ILS. It is remarkable that this simple multi-start
local-improvement procedure matches or improves upon all currently existing (and ofter very
intricate) metaheuristics. This illustrates the notable contribution of the new large neighborhoods,
which drive the search towards local optimum of much higher quality. Run times are of the same
order of magnitude as the other recent approaches, with an average of 4 minutes for MS-ILS, and
36 seconds for MS-LI. This CPU time is suitable for most operational optimization contexts.

Considering the individual results on the largest instances of Sets 4 and 7, MS-LI attains
the largest number BKS, with 46/54 BKS on Set 4 and 44/44 BKS on Set 7. For these sets, the
second methods yielding the most BKS values are SVF on Set 4 with 42/54, and ASe on Set 7 with
40/44. In addition, one new best solution has been found for the first time on instance p.7.3.t with
a value of 1120. Given the considerable effort put on these instances during the past years, it is a
major achievement. Finally, for Sets 1, 2, 3, 5, 6 and 7, all best known solutions have been found by
MS-ILS. MS-LI also performs impressively well in terms of number of BKS, and is ranked among
the top three methods w.r.t. this criteria on all sets.

We finally conduct a group of two-tailed paired-samples t-tests to investigate for each
method X the hypothesis that "MS-ILS yields results which are significantly different than X", with
the results of Set 4 and 7 expressed as percentage of deviation from the BKS for each instance.
The results of these statistical tests are displayed in Table 4. At 0.05 confidence level, MS-ILS
returns significantly different results than CGW, TMH, GTF, ASe, GLS, SVNS, SPR, and MS-LS.
For SVF and MSA, p-values of 0.09 and 0.13 are obtained, respectively. This corroborates our
conjecture that the proposed method outperforms all past algorithms. Further independent tests will
be conducted to validate this statement.
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Table 2: Results on TOP benchmark instances, Set 4
Inst n m CGW TMH GTF SVF ASe GLS SVNS SPR MSA MS-ILS MS-LI BKS

p4.2.a 100 2 194 202 206 206 206 206 202 206 206 206 206 206
p4.2.b 100 2 341 341 341 341 341 303 341 341 341 341 341 341
p4.2.c 100 2 440 438 452 452 452 447 452 452 452 452 452 452
p4.2.d 100 2 531 517 531 531 531 526 528 531 531 531 531 531
p4.2.e 100 2 580 593 613 618 618 602 593 618 618 618 618 618
p4.2.f 100 2 669 666 676 687 687 651 675 687 687 687 687 687
p4.2.g 100 2 737 749 756 757 757 734 750 757 757 757 757 757
p4.2.h 100 2 807 827 820 835 827 797 819 835 835 835 835 835
p4.2.i 100 2 858 915 899 918 918 826 916 918 918 918 918 918
p4.2.j 100 2 899 914 962 962 965 939 962 965 962 962 962 965
p4.2.k 100 2 932 963 1013 1022 1022 994 1007 1022 1022 1022 1010 1022
p4.2.l 100 2 1003 1022 1058 1074 1071 1051 1051 1074 1073 1071 1074 1074
p4.2.m 100 2 1039 1089 1098 1132 1130 1051 1051 1132 1132 1132 1132 1132
p4.2.n 100 2 1112 1150 1171 1174 1168 1117 1124 1173 1174 1172 1172 1174
p4.2.o 100 2 1147 1175 1192 1218 1215 1191 1195 1218 1217 1218 1218 1218
p4.2.p 100 2 1199 1208 1239 1241 1242 1214 1237 1242 1241 1241 1241 1242
p4.2.q 100 2 1242 1255 1255 1263 1263 1248 1239 1263 1259 1265 1265 1265
p4.2.r 100 2 1199 1277 1283 1285 1288 1267 1279 1286 1290 1281 1285 1290
p4.2.s 100 2 1286 1294 1299 1301 1304 1286 1295 1296 1300 1297 1301 1304
p4.2.t 100 2 1299 1306 1306 1306 1306 1294 1305 1306 1306 1306 1306 1306
p4.3.c 100 3 191 192 193 193 193 193 193 193 193 193 193 193
p4.3.d 100 3 333 333 335 335 335 335 331 335 335 335 335 335
p4.3.e 100 3 432 465 468 468 468 444 460 468 468 468 468 468
p4.3.f 100 3 552 579 579 579 579 564 556 579 579 579 579 579
p4.3.g 100 3 623 646 652 653 653 644 651 653 653 653 653 653
p4.3.h 100 3 717 709 727 729 720 706 718 729 729 729 729 729
p4.3.i 100 3 798 785 806 809 796 806 807 809 809 809 809 809
p4.3.j 100 3 829 860 858 861 861 826 854 861 860 861 860 861
p4.3.k 100 3 889 906 918 919 918 864 902 918 919 919 919 919
p4.3.l 100 3 946 951 973 979 979 960 969 979 978 979 979 979
p4.3.m 100 3 956 1005 1049 1062 1053 1030 1047 1063 1063 1063 1063 1063
p4.3.n 100 3 1018 1119 1115 1121 1121 1113 1106 1120 1121 1121 1121 1121
p4.3.o 100 3 1078 1151 1157 1172 1170 1121 1136 1170 1170 1172 1170 1172
p4.3.p 100 3 1115 1218 1221 1222 1221 1190 1200 1220 1222 1222 1222 1222
p4.3.q 100 3 1222 1249 1241 1245 1252 1210 1236 1253 1251 1253 1251 1253
p4.3.r 100 3 1225 1265 1269 1273 1267 1239 1250 1272 1265 1272 1269 1273
p4.3.s 100 3 1239 1282 1294 1295 1293 1279 1280 1287 1293 1295 1295 1295
p4.3.t 100 3 1285 1288 1304 1304 1305 1290 1299 1299 1299 1305 1299 1305
p4.4.e 100 4 182 182 183 183 183 183 183 183 183 183 183 183
p4.4.f 100 4 304 315 324 324 324 312 319 324 324 324 324 324
p4.4.g 100 4 460 453 461 461 461 461 461 461 461 461 461 461
p4.4.h 100 4 545 554 571 571 571 565 553 571 571 571 571 571
p4.4.i 100 4 641 627 657 657 657 657 657 657 657 657 657 657
p4.4.j 100 4 697 732 731 732 732 691 723 732 732 732 732 732
p4.4.k 100 4 770 819 816 821 821 815 821 821 821 821 821 821
p4.4.l 100 4 847 875 878 880 880 852 876 879 880 880 880 880
p4.4.m 100 4 895 910 918 918 918 910 903 919 919 919 916 919
p4.4.n 100 4 932 977 976 976 961 942 948 969 975 972 976 977
p4.4.o 100 4 995 1014 1057 1061 1036 937 1030 1057 1061 1061 1061 1061
p4.4.p 100 4 996 1056 1120 1120 1111 1091 1120 1122 1124 1124 1124 1124
p4.4.q 100 4 1084 1124 1157 1161 1145 1106 1149 1160 1161 1161 1157 1161
p4.4.r 100 4 1155 1165 1211 1207 1200 1148 1193 1213 1216 1216 1211 1216
p4.4.s 100 4 1230 1243 1256 1260 1249 1242 1213 1250 1256 1260 1260 1260
p4.4.t 100 4 1253 1255 1285 1285 1281 1250 1281 1280 1285 1285 1285 1285

7 Conclusion

A new large neighborhood concept has been introduced, leading to an efficient local-
improvement technique and an iterated local search. Computational experiments demonstrate the
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Table 3: Results on TOP benchmark instances, Set 7
Inst n m CGW TMH GTF SVF ASe GLS SVNS SPR MSA MS-ILS MS-LI BKS

p7.2.d 102 2 190 190 190 190 190 190 182 190 190 190 190 190
p7.2.e 102 2 275 290 290 290 290 279 289 290 290 290 290 290
p7.2.f 102 2 379 382 387 387 387 340 387 387 387 387 387 387
p7.2.g 102 2 453 459 459 459 459 440 457 459 459 459 459 459
p7.2.h 102 2 517 521 520 521 521 517 521 521 521 521 521 521
p7.2.i 102 2 576 578 579 579 580 568 579 580 579 580 580 580
p7.2.j 102 2 633 638 644 644 646 633 632 646 646 646 646 646
p7.2.k 102 2 693 702 705 705 705 691 700 705 705 705 705 705
p7.2.l 102 2 758 767 767 767 767 748 758 767 767 767 767 767
p7.2.m 102 2 811 817 824 827 827 798 827 827 827 827 824 827
p7.2.n 102 2 864 864 888 888 888 861 866 888 888 888 888 888
p7.2.o 102 2 934 914 945 945 945 897 928 945 945 945 945 945
p7.2.p 102 2 987 987 1002 1002 1002 954 955 1002 1002 1002 1002 1002
p7.2.q 102 2 1031 1017 1043 1043 1043 1031 1029 1044 1043 1044 1044 1044
p7.2.r 102 2 1082 1067 1088 1094 1094 1075 1069 1094 1093 1094 1094 1094
p7.2.s 102 2 1127 1116 1128 1135 1136 1102 1118 1136 1135 1136 1136 1136
p7.2.t 102 2 1173 1165 1174 1179 1179 1142 1154 1175 1172 1179 1179 1179
p7.3.h 102 3 419 416 425 425 425 418 425 425 425 425 425 425
p7.3.i 102 3 466 481 487 487 487 480 480 487 487 487 487 487
p7.3.j 102 3 539 563 564 564 564 539 543 564 564 564 564 564
p7.3.k 102 3 602 632 633 633 633 586 633 633 633 633 633 633
p7.3.l 102 3 676 681 679 683 684 668 681 684 684 684 684 684
p7.3.m 102 3 754 756 755 762 762 735 743 762 762 762 762 762
p7.3.n 102 3 813 789 811 813 820 789 804 820 820 820 814 820
p7.3.o 102 3 848 874 865 874 874 833 841 874 874 874 874 874
p7.3.p 102 3 919 922 923 927 929 912 918 927 927 929 927 929
p7.3.q 102 3 943 966 987 987 987 945 966 987 987 987 982 987
p7.3.r 102 3 1008 1011 1022 1026 1026 1015 1009 1021 1026 1026 1021 1026
p7.3.s 102 3 1064 1061 1081 1081 1081 1054 1070 1081 1081 1081 1081 1081
p7.3.t 102 3 1095 1098 1116 1117 1118 1080 1109 1118 1119 1120 1118 1119
p7.4.g 102 4 209 217 217 217 217 209 217 217 217 217 217 217
p7.4.h 102 4 283 285 285 285 285 285 283 285 285 285 285 285
p7.4.i 102 4 338 359 366 366 366 359 364 366 366 366 366 366
p7.4.k 102 4 516 503 520 520 520 511 518 518 520 520 520 520
p7.4.l 102 4 562 576 588 590 590 573 575 590 590 590 590 590
p7.4.m 102 4 610 643 646 646 646 638 639 646 646 646 646 646
p7.4.n 102 4 683 726 721 726 730 698 723 730 730 730 726 730
p7.4.o 102 4 728 776 778 781 781 761 778 780 781 781 781 781
p7.4.p 102 4 801 832 839 846 846 803 841 846 846 846 846 846
p7.4.q 102 4 882 905 898 909 909 899 896 907 909 909 909 909
p7.4.r 102 4 886 966 969 970 970 937 964 970 970 970 970 970
p7.4.s 102 4 990 1019 1020 1022 1022 1005 1019 1022 1022 1022 1022 1022
p7.4.t 102 4 1066 1067 1071 1077 1077 1020 1073 1077 1077 1077 1077 1077

Table 4: p-values for the paired-samples t-tests between MS-ILS and other methods
CGW TMH GTF SVF ASe GLS SVNS SPR MSA MS-LS

MS-ILS 0.0000 0.0000 0.0000 0.0916 0.0000 0.0015 0.0000 0.0031 0.1301 0.0144

remarkable performance of these neighborhoods on classic TOP benchmark instances from the
literature, reaching gaps to the best known solutions off less than 0.09%. It is remarkable that a
simple local-improvement method based on these rich neighborhoods reaches solutions of higher
quality than many of the existing metaheuristic frameworks for this problem.

In addition to be efficient, the main strength of our approach is that it is a radically
new way of designing neighborhood-search on prize collecting problems, applicable within any
metaheuristic context. As such, many perspectives of research remain open to combine the two
types of search spaces into a new generation of highly effective methods.
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