On the complexity of (k, ℓ) graph sandwich problems ## Fernanda Couto COPPE/UFRJ, Brasil UFRJ, Rio de Janeiro-RJ, Brasil nandavdc@gmail.com #### Luerbio Faria DCC/UERJ UERJ, Rio de Janeiro-RJ, Brasil luerbio@cos.ufrj.br # Sulamita Klein IM/COPPE/UFRJ, Brasil UFRJ, Rio de Janeiro-RJ, Brasil sula@cos.ufrj.br #### Fábio Protti IC/UFF UFF, Rio de Janeiro-RJ, Brasil fabio@ic.uff.br Loana T. Nogueira IC/UFF UFF, Rio de Janeiro-RJ, Brasil loana@ic.uff.br ### Abstract In 1995 Golumbic, Kaplan and Shamir defined graph sandwich problems as follows: graph sandwich problem for property Π (Π -sp) Input: Two graphs $G^1 = (V, E^1)$ and $G^2 = (V, E^2)$ such that $E^1 \subseteq E^2$. Question: Is there a graph G = (V, E) satisfying the property Π such that $E^1 \subseteq E \subseteq E^2$? The graph G is called sandwich graph for the pair (G^1, G^2) . Note that making $E^1 = E = E^2$ we have the RECOGNITION PROBLEM FOR THE PROPERTY Π . Thus, we can easily see that graph sandwich problems are natural generalizations of recognition problems and, because of that, if the recognition problem for some property Π is NP-complete, so it will be the corresponding graph sandwich problem. In this work we will deal with two special properties: 'to be a strongly chordal- (k, ℓ) graph" and "to be a chordal- (k, ℓ) graph". A graph is (k,ℓ) if its vertex set can be partitioned into at most k independent sets and into at most ℓ cliques. Brandstadt et al. have proved that this problem is NP-complete for $k \geq 3$ and $\ell \geq 3$, and polynomially solvable otherwise. It is also known that the sandwich problem for (k,ℓ) graphs is NP-complete for $k+\ell \geq 3$ [Dantas et al.] and polynomial otherwise [Golumbic et al.]. A graph is *chordal* if it has no C_k as an induced subraph, $k \geq 4$. A graph is *strongly chordal* if it is chordal and if every even cycle of length at least 6 has an odd chord, i.e., a chord between non-consecutive vertices apart from each other by an odd distance in the cycle. The recognition problem for chordal (resp. strongly chordal) graphs is polynomially solvable [Rose et al.] (resp. [Farber]) but the graph sandwich problems for both properties are NP-complete [Golumbic et al.; Faria et al.]. Hell et al. have proved that the recognition problem for chordal- (k, ℓ) graphs is polynomially solvable for all k, ℓ , what allows us to study the complexity of the corresponding graph sandwich problem. Golumbic et al. proved that CHORDAL-(1,1)-SP is in P and R. Sritharan communicated that STRONGLY CHORDAL-(1,1)-SP is NP-complete. In this work we present the result that CHORDAL- (k,ℓ) -SP is NP-complete: for $k \geq 1$ and $\ell \geq 2$, and for $k \geq 2$ and $\ell \geq 1$. We also state that STRONGLY CHORDAL- (k,ℓ) -SP is NP-complete for $k \geq 1$ and $\ell \geq 1$ (refer Figure 1). Figure 1: Our contribution to Golumbic et al.'s diagram presented in the seminal paper of graph sandwich problems. **Keywords:** Sandwich problems, strongly chordal- (k, ℓ) , chordal- (k, ℓ) .