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RESUMO

Neste artigo € introduzido o Problema de Roteamento de Veiculos Capacitados Quadratico
(PRVCQ), um problem combinatério o qual tem sua origem em aplicacdes nas dreas de logistica
e transporte. O PRVCQ estende dois problemas bem conhecidos, o Problema de Roteamento de
Veiculos Capacitados (PRVC) e o Problema Caixeiro-Viajante Quadratico (PCVQ). A primeira
extensao é feita considerando uma matriz de custos modificada, na qual os custos de travessia
passam a ser associados a pares de arestas consecutivas. A segunda é obtida a partir da introdugdo
de demandas para os clientes e de veiculos com capacidade. Uma formulac¢do de fluxo de veiculos
com varidveis de trés indices é apresentada para o problema, na qual as varidveis representam
g-arestas (pares de arestas consecutivas). Esta formulagao € entfo reforcada com algumas classes
de desigualdades vélidas. As rotinas de separacdo das desigualdades sdo apresentadas, as quais
sdo entdo utilizadas em um procedimento de branch-and-cut. Experimentos computacionais sao
coduzidos com o objetivo de demonstrar a eficiéncia da modelagem e das rotinas utilizadas,
fornecendo limites inferiores justos e solu¢des Gtimas para instancias de pequeno e médio porte.
PALAVRAS CHAVE. Problema de Roteamento de Veiculos Quadratico, Problema Caixeiro-
Viajante Quadratico, Branch-and-Cut.

Areas Principais: Logistica e Transportes, Otimizacdo Combinatéria e Programacao Mate-
matica.

ABSTRACT

In this article we introduce the Quadratic Capacitated Vehicle Routing Problem (QCVRP),
a combinatorial optimization problem that arises in practical applications in logistics and trans-
portation. The QCVRP extends two other known problems, the Capacitated Vehicle Routing
Problem (CVRP) and the Quadratic Symmetric Traveling Salesman Problem (QSTSP), the former
by considering a modified cost matrix in which traveling costs are now associated to pairs of two
consecutive edges, and the latter by introducing customer demands and vehicle capacities. We
present a three-index vehicle-flow formulation for the problem in which variables represent q-edges
(pairs of consecutive edges), and strengthen it with some classes of valid inequalities. We present
efficient separation routines for the inequalities used in this paper and derive an exact solver based
on the branch-and-cut paradigm. We conduct computational experiments to show the efficiency of
the modeling and solution approaches by providing tight lower bounds and optimal solutions for
small- and medium-size instances.
KEY WORDS. Quadratic Capacitated Vehicle Routing, Quadratic Symmetric Traveling
Salesman, Branch-and-Cut.

Main areas: Logistics and Transportation, Combinatorial Optimization and Mathematical
Programming.
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1. Introduction

This paper introduces the Quadratic Capacitated Vehicle Routing Problem (QCVRP), an
extension of two important problems in combinatorial optimization and logistics: the Capacitated
Vehicle Routing Problem (CVRP) and the Quadratic Symmetric Traveling Salesman Problem
(QSTSP). In the QCVREP, a fleet of K homogeneous vehicles must be routed from a single depot to
visit exactly once all customers from a predefined set of customers V™ = {1,...,n}. For notational
convenience, the depot node is labeled as the node 0, and we denote V = V+U{0}. With each
vehicle is associated a capacity Q, and with each customer i € V' is associated a demand d; € Z™.
The main difference of the QCVRP with respect to the traditional CVRP is the definition of the edge
costs. They are not defined on every edge but rather on every pair of two consecutive edges. In the
QSTSP, the cost function follows this last structure but now a single vehicle of infinite capacity
is used to visit all customer nodes, instead of a limited fleet of K capacitated vehicles as for the
QCVRP. An important difference between the problem introduced in this paper with respect to the
QSTSP is the cost associated to edges adjacent to the depot. While in the QSTSP the costs incurred
by two edges {0,i} and {0, j} depends on the sequence i — 0 — j (or equivalently j — 0 — i since
the costs are symmetric), in the QCVRP we consider these two routing costs to be independent.
From a strict modeling viewpoint, we can say that the QCVRP generalizes the original CVRP but
only extends the QSTSP, as the latter cannot be modeled as a QCVRP in the strict sense.

The QCVRP is motivated by a real-life application, namely a very large-scale vehicle
routing problem, as follows. Imagine that a very large number of n customers has to be visited
using K vehicles, with K < n, and that it is untractable to handle this large-scale problem with
standard state-of-the-art algorithms due to its size. Instead, customers are grouped into a much
smaller number of clusters, each of which contains an accumulated demand lower than Q. Now,
a planner must decide how to route these K vehicles so as to visit each cluster exactly once, at
minimum total cost. The traveling cost incurred in visiting all nodes inside a cluster depends on the
previous and following clusters on a vehicle route, as one may assume that the vehicle doing this
route will travel from one cluster to the next by connecting the closest pair of nodes belonging to
these two clusters. The traveling cost inside the intermediate cluster corresponds then to solving
an open traveling salesman problem, in which the starting and ending nodes are chosen using the
previously mentioned policy, and so the quadratic costs structure.

Another relevant application of the QCVRP is the solution of vehicle routing problems
with turn penalties. In such setting, a set of vehicles must visit a set of predetermined customers (in
a node-routing context) or edges (in an arc-routing context), subject to some additional constraints.
Each node in the graph represents a corner in the city, and therefore some turns (normally left turns),
are penalized or sometimes simply forbidden, so as to mimic some usual traffic regulations in urban
transportation. In [6], the authors introduced the mixed capacitated general vehicle routing problem
(MCGVRP), a node-and-arc routing problem that considers turn penalties. The authors propose
a graph transformation of the MCGVRP to model it as an asymmetric CVRP (ACVRP), and use
a memetic algorithm especially tailored for the ACVRP to solve it. The MCGVRP extends the
mixed capacitated arc-routing problem (MCARP) that includes applications in snow-plowing [20]
and waste-collection [4], in which left turns are forbidden.

The main contributions of this article are mainly two. First, we formally introduce the
QCVRP by providing a strict mathematical formulation of the problem based on g-edges. Second,
we develop an exact algorithm for the QCVRP based on the branch-and-cut paradigm, and show
that the proposed modeling approach and solution method are useful to derive strong lower and
upper bounds of the problem in short computing times.

The remainder of the article is structured as follows. In Section 2 we present a literature
review of related problems and methodologies. In Section 3 we formalize the QCVRP by providing
a strict mathematical formulation based on g-edges. In Section 4 we present some classes of valid
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inequalities for the problem. In Section 5 we present the different separation algorithms used to
find violated inequalities. In Section 6 we present the exact algorithm based on the branch-and-cut
paradigm to derive lower and upper bounds in an iterative manner. In Section 7 we provide a
computational study on several classes of instances to show the effectiveness of the proposed
approach. Finally, Section 8 concludes the article and provides a discussion of several potential
avenues for future research.

2. Literature review

At the best of our knowledge, the QCVRP has not yet been considered in the literature.
However, it is closely related to some other classes of combinatorial optimization problems.

The Symmetric Traveling Salesman Problem (STSP) is one of the most classical problems
in combinatorial optimization. In the STSP, a traveling salesman (or equivalently, a vehicle with
infinite capacity) must visit a set of vertices and get back to the origin vertex in the minimum
possible time. The traveling distances between each pair of vertices are supposed to be symmetric,
this is ¢;; = c¢;; for every pair of vertices i and j. The STSP was introduced in the seminal work
of [10] in which the authors present a compact two-index formulation containing an exponential
number of constraints. This integer program is solved using a branch-and-cut method, a new
technique at that time. State-of-the-art algorithms for the STSP are based on the work of [10] by
considering several new classes of valid inequalities and scalable separation algorithms [19, 16, 2].

The Quadratic Symmetric Traveling Salesman Problem (QSTSP) is a natural extension of
the STSP in which the distances depend of every pair of two consecutive edges (namely q-edges).
The QSTSP was formally introduced by [13]. The authors introduce a three-index vehicle-flow
formulation of the problem which they strengthen using several classes of valid inequalities. They
perform a polyhedral study and show that several classes of valid inequalities induce facets of
the QSTSP polytope. Practical applications of the QSTSP include the Angle STSP (A-STSP), a
variation of the STSP in which the traveling times on two consecutive edges depend on their angle
at the middle vertex [1].

The Capacitated Vehicle Routing Problem (CVRP) is the most classical variation of the
STSP, in which a fleet of K identical vehicles (instead of a single vehicle as for the STSP) is used
to visit exactly once each node from a predefined set of customer nodes. Every vehicle must start
and end its route at a depot node, and cannot exceed its capacity while collecting the demands of
the customers visited through the route. The CVRP was introduced by [11] who formally stated the
problem. In [17], the authors proposed a compact two-index vehicle-flow formulation for the CVRP
strengthened with capacity cuts, and developed the first exact algorithm for the problem based on
the branch-and-cut paradigm. The CVRP shares with the STSP several structural properties but they
also differ from an algorithmic point of view. Indeed, the capacities on vehicles induce an additional
computational complexity that makes it much harder to solve in practice than the STSP. For the
reader to have an idea, while the most efficient algorithm for the STSP [2] can solve problems
with several thousands of customers to optimality, the most efficient exact algorithms for the CVRP
[14, 3, 8] cannot solve problems containing more than 200 customers.

3. Mathematical formulation

Before formulating the QCVRP, let us define some notation. Let V = {0,1,...,n} be
the set of nodes, and let node 0 be the depot node. Let V* =V \ {0} be the set of customer
nodes. With every customer i € V™ we associate a demand d; € Z. We are given a fleet of
exactly K homogeneous vehicles, each of which has a capacity of Q units of demand. Let E be
the set of edges, namely E = {{i,j} : i,j € V,i < j}, and let E? be the set of q-edges, namely
E?1 = {({i,k},)):i,j,k e Vi <k,i# j,j#k,j#0}. With every g-edge e = ({i,k},j) € E7 is
associated a traveling cost ¢; . Note that in the definitions of sets E and E the symmetry of the
network (and of the routing costs) is implicit. Indeed, if {i,j} and ({i,k},j) encode edges and
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g-edges in E and EY, respectively, then {j,i} and ({k,i}, j) encode exactly the same two objects.
For the single-customer trips represented by routes of the form 0 — i — 0 with i € VT, we let co;
be the routing cost associated. For every customer set S C V' we define r(S) = [Y;csdi/Q], which
is a lower bound on the number of vehicles needed to visit the customers in S due to the capacity
constraints.

Now, let us define the variables of the model. For every i € V* we let w; be a binary
variable equal to 1 iff customer i is served using a single-customer route. For every edge {i, j} € E™,
with EY ={e={i,j} €E:i,j € V*1,i< j}, welet z;; be a binary variable equal to 1 iff customers
i and j are the only two customers visited in a route. For every e = ({i,k},j) € EY we let yjji
be a binary variable equal to 1 iff the gq-edge e is used in a multiple-customer route (this is, a
route visiting at least three customers). In addition, we let for every edge e = {i, j} € E, x;j be a
binary variable equal to 1 iff edge {i, j} is used in a multiple-customer route visiting three or more
customers. Variables x are not strictly necessary as they can be derived from variables y but are still
included in the model. Finally, we define binary variables &;; for every edge {i, j} € E equal to 1
iff the edge {i, j} is used by any vehicle regardless of the number of customers served in its route.
Again, these edge variables are not strictly necessary as they can be derived from the previous ones,
but will help in the presentation of the article as they will allow linking some of our results with
previous results for the CVRP. Indeed, variables & correspond to the usual two-index vehicle-flow
variables of the CVRP used, for instance, in [17, 18]. Note that in order to be consequent with the
notation and the network symmetry, we may use variables z;;, &, xj; and yg; to encode the exact
same variables as z;;, & j>Xij and y; i, respectively.

Now, let us define the following additional notation. For every edge subset F C E
we let x(F) &ef Y.crx. and E(F) = &ef Yocr&e. Analogously, for every g-edge subset F C E7 we

define y(F) def Y.crYe. Forevery F C ET we let z(F ) = Z{i j}er Zij- For every customer subset
UCVTweletw(U) = &f Y..cywi. For any two vertices sets U,T C V, we define (U : T)
{i,j€E:(icUNjeT)V(ieTNjeU)}. Also, for any three subsets U,T,W C V we define
W:T:W)E {e=({ik},j)€ET: (icUNkeW)V (i€ WAkeU),jeT}. Now, for every
vertex subset S CV we let E(S) = def (S:S) and 6(S) = def (S:V\S). We also define, for every
vertex subset S C V, E4(S) = def (S :S:S) in addition to the quantities §°°(S) = &I (S:VA\S:V\S),
50i($) L (S:V\5:8), 50(S) L (S:5:V\S) and 59°(S) & (V\S5:S:V\S).

In addition, if S C VT, we let the sets §7(S), §°F(S), 8§ (S), 8t (S), §°°F(S) be
defined as before but without including edges or g-edges linking S to the depot. Note that if any of

the sets involved in (U : T) or (U : T : W) is a singleton {i}, we will denote instead i.
The QCVRP can be formulated as the following integer linear program:

dif{e:

min Z coiw; + Z (coij+ coji)zij + Z CijkYijk )
iev+ {i,j}eE+ ({i.k}.j)€ET
subject to

E(B({}) = ievt @
S(6({0})) = 3)
£(5(5)) >2 <> scvia<isi<vi-1 @
Yoij +Yoji+zij < 1 LjEVTi<] )
=y(0:i:VT\{i}) ievt (6)
=y(@i:j:V\{i,j}) =y(V\{i,j}:i: ) LjeVTi<] ©)
&ij = xij +zij {ijteE” ®)
&oi = xoi +2wi +2(8" ({i})) icev? ©)
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w; €{0,1} jevt  10)
zij € {0,1} {i,j}eE" D
yije € {0,1} ({i,k}, /)€ ET (12)
x;; >0 {i,jt€E (13)
&ij>0 {i,jteE. (14

The objective represented by the expression (1) aims to minimize the total traveling costs.
The quadratic nature of the costs is expressed in terms of variables y and z. Constraints (2) are
the degree constraints. They impose that every customer be visited exactly once or, equivalently,
that two edges are adjacent to it. Constraints (3) are the fleet-size constraints. They impose that
exactly K vehicles be routed from the depot. Constraints (4) are the subtour-elimination constraints
and capacity cuts. They forbid the appearance of subtours (closed tours not linked to the depot)
and of routes exceeding the capacity of the vehicles. Constraints (5) impose that two-customer
routes of the form 0 — i — j — 0 cannot be associated with the y variables but rather with the
corresponding z variables. Constraints (6)-(7) are the linking constraints between the edges in E
and the g-edges in E9. Constraints (8)-(9) are the linking constraints between the & variables and
variables x,w, z. Finally, constraints (10)-(14) are the integrality and non-negativity constraints of
the decision variables. Note that variables x and & need not be imposed as integers, as this will be
a direct consequence of the integrality of variables y,w,z and the linking constraints.

This formulation is an adaptation of the three-index formulation introduced by [13] for
the QSTSP, and relies on the particular quadratic structure of the costs (they depend on pairs of two
consecutive edges rather than on arbitrary pairs of edges) to derive a linear programming model with
a cubic number of variables. As pointed out by the authors, this trade-off between the number of
variables and the nature of the objective function (linear or quadratic) is usually positive towards the
use of this cubic number of variables with a linear objective, rather than using a quadratic number
of variables with a quadratic objective.

4. Valid inequalities
4.1 Small routes inequalities

The small routes inequalities were introduced by [5] for the Capacitated Location-Routing
Problem (CLRP) under the name of depot degree constraints. For the QCVRP we can derive,
under certain assumptions, three families of valid inequalities. The first assumption, shared by
all three families, is that the number of vehicles is tight with respect to the demands, i.e. that
[d(VT)/Q] =K.

LetSCVT, |S| > 2 be a subset of customers such that d; +d i < Q for every two different
customers 7, j € S. Let us assume that S and the traveling distances (co:)icy+, (Cijk) ({ik},j)cEe Satisfy
the following triangle property: for every pair of customers i, j € S,i < j, co; +coj > coij +coji. The
following single-customer routes cut is valid for the QCVRP:

w(S) < 1. (15)
Proposition 4.1. The single-customer routes cuts (15) are valid for the QCVRP.

Proof. Two customers i, j € S cannot be simultaneously served by single-customer routes. Indeed,
it will always be cheaper to route those two customers using a two-customer route of the form
0—i—j—0. O

Now, let S C V7*,|S| > 4 be such that d; +d; +dx +d; < Q for every four different
customers in S. Let us assume that S and the traveling distances satisfy the following pentagon
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property: for every four different customers i, j,k,l € S, coji + cou > cjjk + cju. The following
two-customer routes cut is valid for the QCVRP:

2(E(S)) < 1. (16)
Proposition 4.2. The two-customer routes cuts (16) are valid for the QCVRP.

Proof. Four customers i, j, k,[ € § cannot be simultaneously served by two different two-customer
routes. Indeed, it will always be cheaper to route those four customers using one route servicing
them all. 0

Finally, let S C V' ,|S| > 4 be such that for every four different customers i, j,k,l € S,
di+dj+di+d; < Q. Let us assume that § and the traveling distances satisfy the triangle property,
the pentagon property, in addition to the following square property: for every three different
customers i, j,k € S, co; + cojk = coij + cijk. The following mixed-customer routes cut is valid
for the QCVRP:

w(S)+z(E(S)) < 1. (17)

Proposition 4.3. The mixed-customer routes cuts (17) are valid for the QCVRP.

Proof. We already know that any two different customers in S cannot be served by single-customer
routes, and that any four different customers in S cannot be served by two different two-customer
routes either. In addition, the square property ensures that three different customers cannot be
served one by a single-customer route, and the other two by a two-customer route. Indeed, it will
always be cheaper to visit those three customers using the same vehicle. O

4.2 Lifted capacity cuts

In this section we present two families of valid inequalities that, in the same spirit of the
capacity cuts (4), are used to forbid vehicle routes from visiting customers that would not fit into a
vehicle due to the capacity restrictions. One of the two families is called lifted capacity cuts. As its
name suggests, they represent a lifting of the original capacity cuts (4) and of the y-capacity cuts
introduced by [5, 9] for the CLRP. Following the same reasoning used by [13] for the QSTSP, one
can observe that the g-edges with both extremities inside of S and the middle vertex outside of it can
be omitted from the cut since they represent vehicles that never left set S. The following inequality
is then valid for the QCVRP for every set S C V'*:

£(8()) —2y(8"(S)) = 2r(S). (18)
Lemma 4.4. Inequalities (18) are valid for the QCVRP.

Proof. First, note that without loss of generality we may assume that 2w(S) + 2z(E(S)) +
2z(67(S)) = 0. Indeed, for each of these terms equals to one, one can remove the corresponding
customers from S and prove the inequality for the remaining ones, because each time that a variable
w or z is equal to one, the accumulated demand associated to each route is not greater than Q and
thus r(S) cannot decrease by more than one unit. Let us assume first that r(S) = 1. If the q-edges
leaving from S were only of the form ({i,k}, j),i,k € S,j € VT \ S, then there would be a subtour.
Thus, there must be at least two edges that are not of this form which will make the left-hand side of
constraint (18) become at least 2. Let us assume now that r(S) > 1. If there were 2k q-edges leaving
from S, with k < r(S), one could follow these q-edges (thanks to the degree constraints) that would
eventually get together to the depot creating at most k routes, one of which at least would violate the
capacity constraint, or some of them would eventually meet in some other customer, thus creating
a subtour. O
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Note that this inequality is valid for every set S and not only for sets of size strictly smaller
than [V /2 as for the QSTSP since tours must necessarily be connected to the depot.

The next lifting of this last inequality is a generalization of the following observation due
to [5] for the CLRP. One can strengthen the capacity cut by not considering some routes visiting one
or two customers inside S. More precisely, the following inequality is valid for every set S C V™,
and for every subset S’ C S such that r(S) = r(S\5'):

xX(8(8)) —29(8" 7 (8)) +2(w(S\ ') +2(E(S\ S)) +2(87(S\5")) = 2r(S). (19)
Proposition 4.5. Inequalities (19) are valid for the QCVRP.

Proof. For the sake of brevity we only include a brief sketch of the proof. Let S” C S’ be the set of
customers i € S’ that are either served by a single-customer route (in which case variable w; would
be equal to one) or by a two-customer route (in which case the corresponding z;; variable would
take the value 1). It can be shown that the left-hand side of inequality (19) is greater than or equal
to the left-hand side of inequality (18) evaluated in the set S\ S”. The result follows from applying
inequality (18) to the set S\ §” and by noticing that r(S) = r(S\ S”). O

Remark The lifted capacity cuts (19) dominate the y-capacity cuts introduced by [5] because of
the tighter left-hand side. They also extend the lifted subtour elimination constraints of [13] valid
for the QSTSP.

The second family of capacity cuts takes into account gq-edges only. Given that q-edges
visit two customers each, one can derive an inequality that does not dominate, nor is dominated by
the previous family of valid inequalities. Let S C V™ be a customer subset of size |S| > 3. Let us
define p(S) = min{|S| — 1, 7(S)}. The following family of g-capacity cuts is valid for the QCVRP:

Y(E!S)) < |S|=1—=p(S). (20
Lemma 4.6. The g-capacity cuts (20) are valid for the QCVRP.

Proof. If r(S) = |S| then all customers in S must be visited by different vehicles and thus y(E4(S)) =
0. Therefore, let us assume that r(S) < |S| — 1. Because there are at least r(S) vehicles servicing S,
then S can be partitioned into n > r(S) non-empty sets S;,i = 1,...,n such that

1ifS] =1

1Sil = y(E*(S:)) = {2 if [S;| >2

and [S| —y(E?(S)) = Li<i<n |Si| —=¥(E4(S;)). Letus define I; = [{i: 1 <i<n,|S;| =1}|,Lb = |{i:
1 <i<mn,|S;| >2}|. Thus, the following identity holds:
IS| —y(E1(S))—1—r(S)=0L+2lL—1—r(S).

If [, =0, then /; = |S| and one has [} + 2, — r(S) — 1 =|S| —r(S) — 1 > 0. If [, > 1 then
L42L—r(S)—1=(n—r(S))+(L—1)>0. O

As for the lifted capacity cuts (18)-(19), one can derive a similar lifting to strengthen
the left-hand side of the inequality. More precisely, let S’ C S be such that p(S) = p(S\ §’). The
following lifted q-capacity cut is valid for the QCVRP:

Y(EI(S) +w(S) +22(E(S) +2(S" - VINS) +y(V\S: 8 :VAS) <[S|—1—p(S). (2D

Proposition 4.7. The lifted q-capacity cuts (21) are valid for the QCVRP.
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Proof. Let S” C S be the subset of customers of S’ being served by single-customer routes,
two-customer routes or by multiple-customer routes using a q-edge in (V\S:S5 :V\S). Let us
define ¥(S,5") = w(S') +2z(E(S)) +z(S' : VT\S) +y(V\S: 8 : V\S). One has that

’)/(S,S/) = |S”|.
Also, because of the definition of S”, one also has that

Y(EU(S\S")) =y(E*(S)).

Using these two identities in addition to the g-capacity cut (20), one can realize that the
following identity and inequality also hold:

Y(E!(S)) +71(S,8") =y(EN(S\S")) +18"| < IS\ S"[ +[8"| = 1= p(S\S").
Because p(S\S') < p(S\S”) < p(S) the result follows. O

S. Separation algorithms

Let QCVRP, be the linear relaxation of (1)-(14). This is, the linear program resulting
from replacing the binary conditions (10)-(14) by the corresponding linear conditions. Given a
solution (E,x,y, w,Z) of QCV RPy, a separation algorithm for a family of inequalities .% is a method
receiving (E,x,y, w,Z) as input and returning an inequality valid for .# violated by (E,XJ, w,2), if
one exists. Note that a separation algorithm may fail in finding a violated valid inequality, in which
case we refer to it as heuristic. Otherwise, it is said exact.

In this section we present separation algorithms, exact and heuristics, for all the classes
of valid inequalities introduced in this paper.

The small routes inequalities (15)-(17) are not separated dynamically but rather included
from the beginning of the algorithm. In particular, we do not add them for every possible subset
S C VT, but we rather consider the sets V.1, = {ic V' :d; < Q/2} and VQJF/4 ={ievt:d;<Q/4}.

Q2
We check if VQ+/2 satisfies the triangle property, in which case we add the corresponding inequality

(15). Then, we check if the pentagon property holds for the set VQJF/ 4» in which case we add the

corresponding inequality (16). Finally, if the triangle and pentagon properties hold for Vg/ 4 We
additionally check the square property before adding the corresponding inequality (17).

Now, let us present the heuristic separation algorithm designed for finding the lifted
capacity cuts (19). For any two positive integers a,b € Z., let a%b be the remainder of dividing a
by b or, said oterwise, if |a/b| = r, a%b := a — rb. The separation algorithm for the lifted capacity
cuts (19) uses two sequential steps, as follows.

We first use a modified version of the implementation of [18] for the separation of capacity
cuts (4). The modification makes use of a parameter € > 0 to find customer subsets S that either
violate a capacity cut (4) or, if not, the difference between its right-hand side and left-hand side is
of at most €. For every set S found, we consider the lifted capacity cut (18) produced by removing
all g-edges leaving and re-entering set S. Let us define k = (d(S) + Q — 1)%Q. If k = 0, we make
S’ = 0 and check if S violates inequality (18), in which case we add this cut to (1)-(14). Otherwise
(i.e., if k¥ > 0), we solve the following 0-1 Quadratic Knapsack Problem (0-1 QKP) to find the set

S
max Z(W,-—i—z(i A \S))ui—i—z Z ZijHilLj (22)
icS i€S jeS\{i}
subject to
Y dipi<x (23)
icS
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u; €4{0,1} i€S. (24)

The set S’ corresponds to the customers i € S such that g; = 1 in the optimal solution of
(22)-(24). Unfortunately, solving the 0-1 QKP is .4#"Z?-hard in the strong sense [7]. However, any
feasible solution of (23)-(24) can be used to construct a valid inequality (19). We make use of a
dynamic programming heuristic proposed by [12] to find a good solution of problem (22)-(24). The
heuristic uses a similar recursion to that of the classical 0-1 (Linear) Knapsack Problem (0-1 KP)
but with the observation that the Bellman optimality principle does not hold anymore. The method
thus yields lower bounds for the 0-1 QKP. The authors report, however, that their heuristic finds
the optimal solutions in a 100% of the problems tested when combined with a simple local search
heuristic due to [15].

The separation problem for the q-capacity cuts (20) and their lifted version (21) is done
in an analogous fashion as for inequalities (18)-(19). For the same candidate sets S, we first check
whether r(S) < |S| — 1 or not. If 7(s) = |S| we then simply check for the violation of the g-capacity
cut (20) in which case we add it to problem (1)-(14). If r(S) < |S| — 1, we first detect a subset
T C Ssuch that r(T) < |T|— 1. Ideally, the set T should be as small as possible. We then solve the
following 0-1 QKP involving customers in W = S\ T

max Y Wiz VIS + Y, Y s+ Y Y v (25)

iew €W jew\{i} €W j keV\S,j<k

subject to
Y diwi<x (26)
iew
wi € {0,1} icW. 27)

The set S’ corresponds to the customers i € W such that y; = 1 in the solution of the
above problem. Because r(T) < |T| — 1 then the set S’ is guaranteed to satisfy p(S\S') = p(S).
To select a good set T, we first sort the customers in S in non-decreasing order of {w; +Z(i :
VIN{i}) + X kev\s,j<kVjik : | € S}. Then, we set T = 0 and iteratively enlarge it by adding the next
customer in the sorted list. We stop when the resulting set T satisfies the property r(T') < |T'|— 1.

6. The branch-and-cut algorithm

In this section we present in detail the exact solver used to solve program (1)-(14), using
the branch-and-cut paradigm. Initially, we consider a relaxation of (1)-(14) in which the capacity
cuts (4) and the integrality constraints (10)-(12) are relaxed. The solution of this problem yields
a lower bound of the QCVRP that can be used as follows: If the associated fractional solution
of this problem X = (E,X, y,w,z) is integer, then it represents either a feasible solution of the
problem, that in the first iteration also corresponds to the optimal solution of (1)-(14), or a solution
violating a capacity cut that can be detected by simple inspection by following the edges used in the
candidate integer solution. If X is not integer, then we have two options: we can either look for valid
inequalities that may be violated by X and strengthen the problem; or we may decide to partially
break the fractionality of the solution by creating two new problems, each of which explores disjoint
parts of the feasible space. Each of these subproblems is then solved using the same strategy, in a
recursive manner.

The branching strategy is as follows. We first try to branch on cutsets. If we cannot
detect any cutset of fractional value, we branch on variables x, z and w, in that order. To branch on
cutsets, we use the following trick already used in successful implementations of branch-and-cut
algorithms for the CLRP [5, 9]. At the root node, each lifted capacity cut (18)-(19) is added as an
equality constraint by adding a slack variable s with coefficient of -2 to the left-hand side of the
inequality. We allow the solver to branch on these slack variables, and impose a branching priority
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to branch in these variables first. Preliminaty tests have helped us to restrict this trick to sets S such
that r(S) < 2. Indeed, branching on small cutsets has a larger impact on either the bounds or the
feasibility of the resulting children nodes. To choose which variable to select among a series of
candidate variables of the same family, we use the strong branching rule implemented in CPLEX.

Note that our implementations of the separation procedures are thread-safe, which
allows taking advantage of the parallel implementation of the IP solver of CPLEX. During our
computational analyses we assess the efficiency of using this feature when compared to a serial
implementation of the proposed branch-and-cut solver.

7. Computational results

To assess the efficiency of the modeling an solution approaches proposed in this article,
we have run our algorithm on a selected number of instances adapted from classic instances from
the literature for the CVRP, namely the sets A, B, E and P. More precisely, we consider all instances
in these sets containing 60 customers or less. The routing costs have been modified to introduce
penalties on the angles incurred on each pair of consecutive edges. Namely, let (};;){; j1ee be the
routing costs of the original CVRP instances. For every vertex i € V let p; be the position of node
i in the plane. For every edge {i,j} € E we let ﬁ be the vector in the plane with tail in p; and
head in p;. We also let p;p; = —p;p}. In addition, < -,- > and || - | denote the inner product of two
vectors and the norm of a vector, respectively. For every q-edge ({i,k}, j) € E9, the angle o;jx is

defined as
< PPi DiPk >)

O jx = arccos <
vl

We let A > 0 be a parameter representing the penalty incurred when the angle o jx is lower
than 7. The routing cost of a g-edge ({i,k}, j) € E? is computed as follows:

(28)

B {éL(2%j+}’jk)(1+7Lcos(aijk/2))+0.5j ifi=0,jkecvV* 29
: .
2

L(%ij+ Yir) (14 Acos(ogji/2)) +0.5]  ifi, jkeV?

Also, for the single-customer routes, the routing costs (co;);cy+ are computed as co; =
[270:(1+A)+0.5] for every i € V. Note that when A = 0, the routing costs correspond to those
of the original CVRP.

Our algorithm has been run for a maximum time of two hours for each instance. In Table
1 we report the following aggregate results: The family of instances (Column labeled Family); the
number of instances considered for each family (Column labeled #Inst); the number of instances
solved to optimality (Column labeled #opt); the average number of branch-and-bound nodes
inspected (Column labeled #N); and the average CPU Time, in seconds, taken by the algorithm
on the instances solved to optimality (Column labeled 7).

Family #Inst #opt #N T

A 20 13 492 649
B 17 9 867 772
E 7 6 602 431
P 19 9 684 200

Table 1: Aggregate results of the exact solver for the QCVRP

The largest instance solved by our algorithm (in terms of the number of customers) is
instance A-n53-k7, which took 847.8 seconds. Instead, the smallest instance that our algorithm
could not solve in the allowed time of two hours is instance B-n43-k6 for which only an upper
bound was available at the end of the computation, of value 839, while the best lower bound was of
830. In total, 37 instances out of 63 were solved to optimality in less than two hours. The average
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optimality gap at the root node for the instances solved to optimality was of 2.4%, which shows the
strength of our model by its capability for producing tight lower bounds.

8. Concluding remarks

This article introduces the Quadratic Capacitated Vehicle Routing Problem (QCVRP), a
combinatorial optimization problem arising in practical applications in logistics and transportation.
We propose a mathematical formulation of the QCVRP based on g-edges, and strengthen it with
the inclusion of some classes of valid inequalities. We show that these inequalities are not only
valid for the QCVRP, but that in some cases they also dominate some known valid inequalities for
the CVRP. We have implemented an exact solver based on the branch-and-cut paradigm, and tested
it on several generated instances to assess its efficiency. We show that our modeling and solution
approaches are efficient to provide tight lower bounds and optimal solutions of the QCVRP in
moderate computing times even for some medium-size problems. As of potential avenues of future
research, we believe that embedding some of the inequalities introduced in this paper into a column
generation-based exact solver would result in a much more robust algorithm. Also, we believe that
some new cutting planes could still be derived for the QCVRP that could help strengthening the
bounds. Finally, we believe that the development of heuristic methods capable of providing good
quality solutions is critical and would also accelerate the branch-and-cut method by helping it to
detect non-promising branching directions.
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