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ABSTRACT

This paper proposes exact algorithms for the Traveling Salesman Problem (TSP) with
Draft Limits (TSPDL), which is a variant of the well-known TSP arising in the context of
maritime transportation where draft limits are imposed due to restrictions on the port infrastructures.
The exact algorithms are based on three mathematical formulations and their performances are
compared through extensive computational experiments. The column generation based formulation
and resulting branch-cut-and-price algorithm outperform the other two exact algorithms and
previously proposed methods. Moreover, the open instances from the literature have been solved to
optimality.
KEY WORDS. Draft limits. Traveling Salesman. Cutting planes. Column generation.

Main areas: Combinational Optimization. Logistics and Transport. Mathematical Program-
ming.

RESUMO

Este artigo propode algoritmos exatos para o Traveling Salesman Problem (TSP) with
Draft Limits (TSPDL) que consiste em uma variante do TSP identificada no contexto do transporte
maritimo onde limites de capacidade sdo impostos em virtude de restricdes de infraestrutura dos
portos. Os algoritmos exatos sdo baseados em trés formulagdes mateméticas e seus desempenhos
sdo comparados por meio de experimentos computacionais. A formulacdo baseada em geracdo
de colunas e o algoritmo branch-cut-and-price resultante apresentou melhores resultados tanto em
relacdo aos outros dois algoritmos exatos como em relacdo aos métodos propostos anteriormente.
Além disso, as instincias abertas da literatura foram resolvidas até a otimalidade.
PALAVRAS CHAVE. Draft limits. Caixeiro Viajante. Planos de corte. Geracao de colunas.

Areas Principais: Otimizacdo Combinatoria. Logistica e Transportes. Programacao
Matematica.
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1 Introduction

The Traveling Salesman Problem (TSP) with Draft Limits (TSPDL) is a variant of the
well-known TSP, recently introduced by Rakke et al. (2012), that arises in the context of maritime
transportation. The sequence of ports that a cargo boat visits in a tour is dependent on the port
infrastructures: the sea-level in a port is sometimes not sufficiently deep to accommodate loaded
cargo boats. The port is thus associated to a draft limit, such as the maximum vertical distance
allowed between the waterline and the bottom of the hull. Note that the draft of a cargo boat
depends on the load: the heavier the load, the higher the boat’s draft. Therefore, draft limits can be
easily translated into restrictions on the maximum load of the boat.

The problem can be formalized as follows: A directed graph G(V, A) is given, where
V ={0,...,n} is the set of ports to be visited and A = {(i,7),7,7 € V,i # j} is the arc set, or set
of connections between ports. Each arc (4, j) € A is associated to a routing cost ¢;; > 0,7 # j. The
vertex 0 is the port from which the boat starts and ends its tour, whereas vertices V' = {1,...,n}
are ports to be visited exactly once. Each port requires the delivery of d;,i € V', units of load
and is associated to a draft limit /;,4 € V'. The initial load is @ = > .y~ d; and we denote
d = min;ecy{d;}. The boat cannot enter port ¢ if its load is heavier than [;, or the hull of the boat
could be grounded. Therefore the TSPDL asks for the minimum cost Hamiltonian tour, visiting
each port exactly once and not violating draft limit constraints.

Despite its simple definition, the TSPDL proved to be hard to solve to optimality. The
problem, as a generalization of the TSP, is N"P-Hard and combines the complexity of a TSP with
that of a scheduling problem: draft limits implicitly define precedence constraints along the tour.

Rakke et al. (2012) proposed two mathematical formulations: the first formulation makes
use of the binary variables x;; assuming value 1 if arc (4, j) is in the solution, and continuous
variables y;;, representing the load on the boat while travelling arc (i, j). The resulting formulation
is compact, but provides poor quality bounds. The second formulation includes two additional
sets of variables: w; and t;; specifying the position of port j and of arc (i, ) in the circuit,
respectively. These two sets of variables allow for the introduction in the model of the Miller,
Tucker, and Zemlin constraints (MTZ)(Miller et al., 1960). The MTZ constraints, usually employed
to avoid subtours, are used to strengthen the formulation and they are included at the root node of
the branch-and-bound tree.

Both formulations have been further strengthened by dynamically separating subtour
elimination constraints (Dantzig et al., 1954), as well as their lifted counterpart (Balas and Fischetti,
2004). Moreover, lower bounds on the u; variables and lower bounds on the sum of y;; variables
are imposed.

The branch-and-cut algorithms originating from both formulations are capable of solving
quite effectively instances with a limited amount of ports with draft limits, but, when the percentage
of ports with a draft limit increases, the algorithm struggles even for medium-sized instances. The
problem seems therefore challenging and, as far as we are aware, no other attempts have been
made to solve it exactly. This motivated our interest in the problem and we decided to investigate
alternative formulations and solution techniques.

Three alternative mathematical formulations are introduced (see Section 2). The first
formulation is based on two-index variables, the second formulation is based on three-index
variables, whereas the third can be viewed as an improvement over a Dantzig Wolfe decomposition
of the second, including the concept of ng-routes (Baldacci et al., 2011), and it is solved through a
branch-cut-and-price algorithm.

In Section 3, a description of the branch-and-cut and branch-cut-and-price implementa-
tions are presented. The results of our computational experience are summarized in Section 4, and
Section 5 presents conclusions and future possible research directions.
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2 Mathematical Formulations

The first formulation we propose, denoted F1, is composed of two sets of two-indexed
binary variables. The x;; variable assumes value 1 if (7, j) € A is in the solution, O otherwise. The
variable y;;, assumes value 1 when the boat enters port i € V' carrying k € {d;,...,l;} units of
load, 0 otherwise. Note that arcs (4, j)|d; > l; — d; can be removed from the network: in order
to simplify the notation we do not explicitly remove these arcs, but it is sufficient to disregard the
corresponding variables in our models to take this aspect into account. The formulation F1 can be
stated as follows:

(F) min Y cimi (1)
(i,7)€EA
st Y wp=1VieV )
jEVij#i
Y ay=1,¥eV (3)
jEVij#i
> yk<lLVke{d,...,Q-d} )
ieV!|l;>k
l;
Z yir=1,VieV’ 5)
k=d;
yiq = xoi, Vie V'|l; =Q (6)
Yid; = Ti0, Vi € V' (N
Ti; + Yik <1+ Yjk—d; > V(’L,]) S A, ke {d] +d;, ... ,min{lh lj + dl}} (8)
Tij € {07 1}7 V(l,j) €A )
yir €{0,1}.Vie V' ke {d;,...,1l;} (10)

The Objective Function (1) aims at minimizing routing costs, Constraints (2) and (3)
are the degree constraints. Constraints (4) impose that the boat visits at most a port for each
intermediate load value. Constraints (4) are not necessary to define the optimal integer solution,
but they proved to strengthen the linear relaxation of F1. Therefore we included them in the
formulation. Constraints (5) state that each port has to be assigned a load. The first and last position
of the tour are imposed to be connected to the initial port O (Constraints (6) and (7), respectively).
Constraints (8) link variables z;; and y;j: if arc (¢, j) is traversed, z;; = 1 and  and j are located
in consecutive positions of the tour. Therefore summing variables x;;, y;; can result in a value
equal to 2 only if y; x4, = 1. These constraints generalize similar constrains encountered in single
machine scheduling problems (an interested reader can refer to the models based on assignment and
positional date variables in Keha et al., 2009). Finally Constraints (9) and (10) define the binary
nature of the variables.

Formulation F1 presents similarities with the MTZ-based formulation for the Asymmetric
TSP (ATSP) (see Roberti and Toth, 2012 for a recent overview and comparison of ATSP models),
but consists only of binary variables.

Finally, F1 is strengthened by incorporating the trivial constraints

Tij + x5 < 1,V(i,j) cA (1)

and by separating in a cutting plane fashion the subtour elimination constraints:
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YN miy>1. vSCV (12)
€S jeS
For this latter set of inequalities, the exact separation can be done in polynomial time.
Formulation F2 considers three-indexed binary variables zfj, assuming value 1 if arc
(i,7) € A is visited by the boat carrying k units of load (including the demand of port j). By
denoting K;; = min{l;,l; — d;}, formulation F2 is:

(F2) min > Y ez (13)
(irj) €A k=d;
Kz'j
s.t. Z Z Zy=1VjeV (14)
i€V k=d;
i#]
> - > a2 =0,vieVke{d,... L} (15)
eV i jeVj#i
lj>k+d; lj>k—d;,d;<k—d;
=0, VieV ke{l,...,Q} (16)
2 =0,Vj € V|l; = Q. k< Q.ke{d;,....1l;} (17)
2y € {0,1}. (4, 4) € A,k € {dj, ..., Ki;} (18)

The Objective Function (13) minimizes routing costs. Constraints (14) are the degree
constraints. Constraints (15) preserve the load conservation. Constraints (16) and (17) force the
boat to return to the depot empty and leave the depot carrying () units, respectively. Constraints
(18) define the nature of the variables. Formulation F2 is similar to the three-index formulations
proposed in Fox et al. (1980), for the Time Dependent TSP.

Constraints

YD Hi=1VvieV (19)
JEV k=d;
J#i
are implied by Constraints (14) and Constraints (15), as previously stated in Pessoa et al. (2008).
F2 can be strengthened by the trivial constraints:

K K
o+ k<1 vij)eA (20)
k=d, k=d;

that have been included in the formulation a priori.

Flow conservation constraints ensure that subtours are avoided for F2 integer solutions,
however we strengthened the formulation by including the subtour elimination constraints as cutting
planes (as for F1):

Ky
SIS 1 vsCV 1)

€S ]ES’ k:d]
Finally, F2 can be strengthened by adding the 2-cycle inequalities:

4 < 3 VL) € Ay # 0,k = {d;, ..., Kij) (22)
teViA{i gt >k—d;
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as proposed in Abeledo et al. (2013). These constraints have been added to F2 in a cutting-plane
fashion, using an exact enumerative separation procedure. Note that the constraints can be avoided
for the arcs incident in the depot, because Constraints (16) and (17) ensure that no arcs return to the
depot after visiting the first port and no arcs would visit a port after the depot.

Proposition 1. The linear relaxation of F2 dominates the linear relaxation of F1.

Proof. A zT’“j solution of F2 can be converted into an F1 solution (Z;;,%;;) with the same cost,
considering the following transformation:

JJ” = k‘:]dj Z,iji \V/(Z,j) S A
m:EjEV\j;éi Zlkj, VZEV’,k:{dl,,ll}
lj2k+dj

It is straightforward that, given (mTj, %), Constraints (2), (3) and (5) are implied by
constraints in F2, in fact, once converted into 2,
(19), and (14), respectively.

According to Constraints (17), () units of load are shipped from the origin port and, from
Constraints (16), zero units return to the same port. Moreover, Constraints (15) guarantee that
the load monotonically decreases in the tour cycle defined by Constraints (14) and (15). Hence,
Constraints (4),(6) and (7) are satisfied by F2.

In the following we proof that Constraints (8) are satisfied by F2: we first express the
constraints in term of zfj variables:

y variables, they correspond to Constraints (14),

g - P
DRSS DI R
p=d; SEV|s#i
ls>k+ds
Given Constraints (15), we can write:
Kij
D k—d;
Z zm + g z Zij + g Zig
seV]s#i p=d; SEV |s#i
lo>k+ds ls>k—d;,ds<k—d;

The latter term can be overestimated by

Kis
Zij + > S D DD D

p=d; SEV |s#1 s€EV,s#1 p=ds
ls>k—d;,ds<k—d;

Given Constraints (19)
Z Zzwjtz 1—1—1—2 di
SEV,s#1 p=d
This can be overestimated by
1+ ij_di <1+ Z zﬁj_di =14+ Yjk—d;-
seV|s#j
lszk_di‘f'ds

Therefore, Constraints 8 are satisfied.
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On the other hand, the linear relaxation of F1 allows for disconnected subtours with
at least three vertices of lower cost than the corresponding integer connected solution, while
F2 ensures connectivity because of Constraints (15). Therefore the feasible region of the linear
relaxation of F2 is a subset of the feasible region of the linear relaxation of F1.

O

A useful relaxation of the problem is obtained by removing (14) from F2. In this case,
a feasible solution to (15)-(18) is also a tour starting at the port 0 with load ) and ending at the
same port with load 0, respecting the draft limits. Nevertheless, such tour does not have to visit all
ports, while other ports may be visited more than once. Optimizing this relaxation can be done in
O(n?Q) time by a dynamic programming procedure, which suggests the following reformulation
of F2. Let P be a set of all paths defined above. For each p € P, we introduce the binary variable
Ap indicating if p is used or not in the solution. Define qup as a binary coefficient indicating whether

variable z ;; 18 associated to path p.

Minimize > (> > E qm Peii)Ap (23)
pEP i€V jEV k=
J#i
S.t.
2. (2 Zqz])p—l, VieVv (24)
peEP jEV k=
J#
A € {0,1} Vp € P. (25)

Cuts over the zfj variables can be translated to the ), variables by applying the equality

qup)\ = Zl],

peP

as already shown when deriving (24) from (14).

The linear relaxation of this reformulation can be efficiently solved by column generation.
Significantly stronger linear relaxations can be obtained by forbidding some paths in P that visit
some ports more than once. One alternative is to avoid returning to a port ¢ before visiting at least
s ports other than 7 (Irnich and Villeneuve, 2006), thus eliminating tours with s-cycles.

Instead, we use the following strategy that has already been proved to be more efficient
in practice (Baldacci et al., 2011). For each customer 7 € V’, let N; C V' be the ng-set of 1,
defining its neighbourhood. This may stand for the |V;| closest ports and includes i itself. The
cardinalities of all ng-sets are the same, denoted by T'. An ng-path is a path as defined in P where
every cycle that starts and ends at a vertex ¢ must contain at least one vertex j such that i ¢ Nj.
This can be interpreted as if the boat “forgot” the visit to ¢ when passing by the port j. In our
implementation, we define a different ng-set IV Zk for each load k of the boat after visiting each port
1. The neighbors of port ¢ with load k are then selected as the T closest ports that can be visited
immediately before ¢ without violating the draft limits. This modification strengthens the relaxation
since original ng-sets spend part of their memory to store visits to ports that would violate the
draft limits. The same pricing algorithm can be used to handle these ng-sets. To the best of our
knowledge, this is the first time that ng-sets depending on the load are considered.

Formulation F3 is then defined as (23)-(25) plus all inequalities described in Abeledo et al.
(2013) translated to the A, variables.

3 Algorithms Description

The branch-and-cut algorithms for formulations F1 and F2 have been implemented using
the Callable Libraries of CPLEX, and, the subtour elimination constraints (12) and (21) have
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been separated using the CVRPSEP Library (Lysgaard, 2003). The subtour constraints have been
separated only up to the seven-th level of the branching tree to speed up computation. Moreover,
at most 50 subtour cuts have been added per iteration. The 2-cycle inequalities (22) were separated
only at the root node. CPLEX strong branching was chosen for branching and all CPLEX cuts have
been used for strengthening the formulation.

The branch-cut-and-price algorithm for formulation F3 is an adaptation of the one
proposed by Abeledo et al. (2013). We enhance it by replacing the 5-cycle elimination in the pricing
problem with the ng-sets described above. When increasing the value of 7', the lower bounds
improve but the pricing becomes slower. In our case, 7' = 12 offers a reasonable compromise
between speed and lower bound quality. The method starts by only considering constraints (24) and
iteratively adds the remaining inequalities on demand using the separation procedures described
by Abeledo et al. (2013). Furthermore, we branch over the x;; variables translated from the zfj

variables using
k
ZZ] .
k=d,

!Tij =

Given a relaxed solution Z, we choose a pair of ports (7, ;) such that Z;; + Zj; is strictly between
0 and 1 and add the constraint x;; + x;; < 0 in one branch and x;; + z;; > 1 in the other. These
cuts are translated back to the zfj variables and then to the )\, variables. In the selection of the best
pair (4, j), we try to maximize the absolute difference between z;; + Z;; and a target value 0.6 by
choosing the pair that maximizes

min{(:f:ij + {Z‘]l)/()6, (10 — Ti5 — :E]z)/04}

4 Computational Results

The instances considered in our extensive computational testing belong to the benchmark
set proposed by Rakke et al. (2012). The problems are adaptations of instances from the TSPLIB
(namely burmal4, ulyseesl6, ulysses22, fri26, bayg29, grl7, gr2l, and gr48), with number of
vertices ranging between 14 and 48. In the following, the acronym a_b_c refers to the ¢! instance,
adapted from the TSPLIB problem a with b% of ports with draft limit smaller than ().

For each TSP instance, problems with 10%, 25% and 50% of the ports having a draft
limit smaller than ) have been generated. More precisely, given each TSP instance and each
percentage of ports with drafts smaller than (), ten instances have been proposed. Drafts smaller
than ) have been randomly generated between 1 and n — 1. The instances are available at
http://jgr.no/tspdl.

Our tests were performed on an Intel Core 15 with 3.2 GHz and 4 GB of RAM, running
Ubuntu Linux 10.04. A two-hours time limit was imposed and a single thread used throughout the
computational experience.

In the following, we compare the root node lower bounds of F1, F2, and F3 (including or
not additional constraints). For each Instance and each formulation, the percentage deviation of
lower bound z with respect to the optimal solution z,,; is computed as:

Z).

Dev(%) =100 x (1 —
Zopt

The computing time in seconds is reported in the columns T'ime(sec).

Aggregated results of the root node for each instance set are provided in Table 1, where
for each set of instances the average percentage deviation of the lower bounds from the optimal
solutions (Dev(%)) and average computing time in seconds (T'ime(sec)) are provided. Note that
the lower bounds are obtained by including subtour elimination constraints (in a cutting plane
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Table 1: Root node lower bounds: summary of the average results

Fl+ F2+ F3
(12) 21)+(22)
Instance Dev. Time Dev. Time Dev. Time

(%) (sec) (%) (sec) (%) (sec)
burmal4 257 044 016 019 000 038
ulysses16 152 072 020 034 000 2445
ulysses22 550 426 256 249 0.00 27.73

fri26 790 859 234 679 000 1502
bayg29 7.13 1899 265 1338 0.00 12.14
arl7 290 098 022 041 0.00 1392
ar2l 737 229 205 122 000 11.13
grd8 11.24 606.14 5.05 27472 0.84 125.22
Avg. 577 8030 190 3744 0.11 2875

fashion) in F1 and F2, a well as Constraints (22) for F2, because these constraints proved to be
necessary to achieve good quality lower bounds for both algorithms.

F2 with Constraints (21) and (22) provides lower bounds that are on average between
0.16% and 5.05% from the optimal solutions, whereas F1 with (12) provides solutions with average
gaps from 1.52% to 11.24%. Moreover F2 is roughly five times faster than F1. F3 provides even
more competitive lower bounds: all set of instances but some of the gr48 have been solved to
optimality at the root node, in less than roughly 30 seconds on average. The maximum percentage
deviation for the lower bounds is achieved in the instances with 48 vertices and it is 0.48%.

In terms of optimal solutions achieved, we compare the best bounds provided by Rakke
et al. (2012) with those obtained by F1 with (12), F2 with (21) and (22) and F3. The experiments
conducted by Rakke et al. (2012) had been performed on a HP d1160 G3 computer with 2x3.0GHz
Intel E5472 Xeon CPU and 16GB of RAM. The solver used was Xpress-MP 7.2 and the separation
routine for the subtour elimination constraints was coded in C using the Mosel 3.2.0 callbacks.
Finally, the algorithm has been executed using parallel processing on the 8 cores available on
the machine and for at most 10000 seconds. Our testing has been performed on a more modest
computer, using a single core and a 7200 seconds time limit, therefore our results are not directly
comparable to those of Rakke et al. (2012).

A summary of the results can be found in Table 2, where the number of optimal solutions
achieved for each benchmark set if given. Even if the number of optimal solutions obtained by
Rakke et al. (2012) is higher than that of F1, it is interesting to notice that F1 is not dominated.
The ulysses22_50_4 instance is an example of problem in which F1 outperforms Rakke et al.
(2012) algorithms, even if executed on a slower computer and for a shorter amount of time. F2
is capable of solving 214 out of the 240 instances in the set, but only 4 of the gr48 instances.
F3 solves to optimality all instances in the set. Detailed results for each instance are available at
http://www.optimization-online.org/DB_HTML/2013/02/3790.html.

5 Conclusions

In this paper, we presented three exact algorithms for the TSPDL. The first algorithm
is a branch-and-cut and it is based on a compact formulation in which two sets of two-index
binary variables and a polynomial number of constraints are employed. This formulation,
when strengthened with subtour elimination constraints and trivial constraints is not empirically
dominated by the best formulation proposed by Rakke et al. (2012). The second algorithm is also
a branch-and-cut, but the underlying formulation considers three-index variables. This formulation
is proven to dominate the previous one, both theoretically and empirically. The third algorithm is
a branch-cut-and-price and it is based on a path interpretation of the second formulation. Columns
are generated by dynamically introducing ng-paths to the formulations. The latter algorithm was
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Table 2: Optimal solutions: summary of the number of optimal solutions achieved
Rakke et al. F1+ F2+ F3
(2012)  (12) (21) +(22)

burmal4 30 30 30 30
ulysses16 30 30 30 30
ulysses22 27 17 30 30
fri26 23 13 30 30
bayg29 19 14 30 30
erl7 30 30 30 30
ar22 30 26 30 30
gr48 7 1 4 30
Total 196 161 214 240

capable of solving to optimality all the benchmark instances from the literature.
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