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ABSTRACT

Reducing the problems related to transportation networks has challenged
researchers from several areas. There are many attempts in solving the different combi-
natorial network flow problems that arise in this context. In this work, we investigate the
problem of applying tolls on some arcs of road networks. The problem of defining tariffs
for a given subset of the arcs, maximizing revenue when users take the least cost path, is
known as a network pricing problem. In this work we apply a biased random-key genetic
algorithm for large instances of this problem. The experimental results reported show that
the algorithm found good solutions for large instances in a short time.

KEYWORDS. Bilevel programming, Genetic algorithms, Network pricing problem,
Combinatorial Optimization.
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1. Introduction
Transportation is an important component on the economy, a promoter of wealth,

the development and the welfare of populations. Reducing the problems related to trans-
portation networks has challenged not only traffic engineers, but also researchers from
several areas. There are many rules and procedures that are currently in use aiming at im-
proving the traffic flow in a city or road. They can also attend other interests. Motivating
the use of bicycle, for example, reduces traffic congestion and improves life style. In spite
of the world effort in reducing traffic flow, the still remaining traffic causes congestion in
almost all cities and busy roads. Another alternative to reduce some problems is applying
tolls on some arcs of the network.

The main idea is that the deployment of tolls on certain roads can induce drivers
to choose alternative routes, thus reducing congestion as the result of better traffic flow
distribution. Naturally, tolls can increase the cost of a trip, but this can be compensated with
less travel time, reduced fuel cost, and lower amounts of stress. In the 1950s, Beckmann
et al. (1956) proposed the use of tolls with this objective. This idea has made its way
into modern transportation networks. In 1975, Singapore implemented a program called
Electronic Road Pricing or ERP. Several cities in Europe and the United States, such as
in London and San Diego, have begun to charge toll on their transportation networks (Bai
et al., 2010). Tolls are also applied in some small European towns, like Peruggia (Italy), to
reduce the number of people driving in downtown areas.

The optimization of transportation networks using tolls is addressed by many
works. The goal of the minimum tollbooth problem (MINTB), first introduced by Hearn
and Ramana (1998), is to minimize the number of toll locations to achieve system optimal-
ity. Yang and Zhang (2003) formulate second-best link-based pricing as a bi-level program
and solve it with a genetic algorithm. In Bai et al. (2010) it is shown that the problem is
NP-hard and a local search heuristic was proposed. In Stefanello et al. (2013), an exten-
sion of Buriol et al. (2010), the authors deal with the problem of locating a fix number K
of tolls, as well as defining their tariffs. For a complete review of road pricing optimization
problems we refer the reader to the survey by Tsekeris and Voß (2009).

Another class of problems on flow networks is defined when only a given subset of
the arcs can be tariffed. This is the case of the network pricing problem (NPP) introduced
by Labbé et al. (????), which is further explored in this work. In an NPP an authority im-
poses charging tolls in a given set of arcs with the objective of maximizing the revenue,
supposing that travellers always take the shortest cost path. The shortest path is computed
considering the tolls and a fix link cost. In game theory, a similar problem is known as
the Stackelberg game (von Stackelberg, 1952). In this game there is a leader and a fol-
lower. The leader plays first choosing the best strategy supposing that the follower reacts
in an optimal way to its choice. Knowing the decision of the leader, the follower chooses a
strategy considering its own benefit. Similar problems and applications are toll optimiza-
tion systems (Dewez, 2004), long-distance freight transportation overseas (Brotcorne et al.,
2000), airline charging (Castelli et al., 2012), and in telecommunication networks (Başar
and Srikant, 2002; Bouhtou et al., 2007).

A bilevel NPP was first introduced by Labbé et al. (????) for a multicommodity
network. The problem consists in determining the tariffs to tolls on a subset of arcs of a
network, with the objective of maximizing the profit, given that users travel on shortest
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cost paths. In this problem the authority is supposed to fix its toll prices first, and then the
users choose their paths having the complete knowledge of all network costs. In Labbé
et al. (????) the general problem was proved to be NP-complete, while particular instances
are polynomially solvable, as for example, the single toll arc case. In this work it was
also showed how the lower level optimization problem can be replaced by its primal and
dual constraints and its optimality conditions, stating that the primal and dual objective
functions must be equal, yielding a single level problem which then needs to be linearized.
In Roch et al. (2005) the NPP with lower bound constraints on tolls was proved to be
strongly NP-hard even for one single commodity. Other results can be found for instance
in Bouhtou et al. (2007), Dewez (2004), Heilporn et al. (2010) and Brotcorne et al. (2012).

In this paper, we approach the multicommodity network pricing problem. The
objective is to determine the tariff of a given subset of arcs of the network maximizing the
revenue computed by travellers that choose their shortest cost path routes. This work is
a preliminary study which proposes a biased random-key genetic algorithm (BRKGA) to
solve large scale instances from the bilevel multicommodity network pricing problem. We
further present a set of experiments, providing some conclusions and directions to future
work.

This paper is organized as follows. In Section 2 we present a overview and a math-
ematical formulation of the network pricing problem. The biased random-key genetic al-
gorithm to solve this problem is presented in Section 3. Computational results are reported
in Section 4. Finally, conclusions are drawn in Section 5.

2. The network pricing problem
Consider a network represented by a directed graph G = (V,A, c) where V repre-

sents the set of nodes (i.e., vertices or points of interest), and A the set of arcs (i.e., links
or road segments). The set A is partitioned into two subsets, i.e., A = A1 ∪ A2. Subset
A1 contains the K = |A1| arcs that can be tariffed, and belongs to the leader, while A2 is
owned by other agent in the network and the arc costs ca are known a priori. Besides the
tariffs, arcs from K = |A1| also has a cost ca. Thus, the arcs belonging to A1 have cost
ca + ta, while the arcs that belong to A2 have cost ca, where ca is the fix cost of the arc and
ta is the tariff applied to the arc a.

In addition, let

K = {(o(1), d(1)), (o(2), d(2)), . . . , (o(|K|), d(|K|)} ⊆ V × V

denote the set of commodities or origin-destination (OD) pairs, where o(k) and d(k) rep-
resent, respectively, the origination and destination nodes for k = 1, . . . , |K|. Each com-
modity k = 1, . . . , |K| has an associated demand of traffic flow dk, i.e., for each OD
pair (o(k), d(k)), there is an demand dk that emanates from node o(k) and terminates in
node d(k).

To ensure that the problem is bounded, it is assumed that for each commodity k ∈
K there is an upper bound on the amount the customer is willing to pay, or there exists a
path from source to destination which uses only fixed cost arcs a ∈ A2.

3648



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

The multicommodity NPP has been formulated as follows (Labbé et al., ????):

max
∑
a∈A1

ta
∑
k∈K

xka (1)

min
∑
k∈K

{∑
a∈A1

(ca + ta)x
k
a +

∑
a∈A2

cax
k
a

}
(2)

∑
a∈IN(v)

xka −
∑

a∈OUT (v)

xka =


−dk, if v = d(k)

dk, if v = o(k)

0, otherwise
∀v ∈ V, ∀k ∈ K, (3)

xka, ta′ ∈ <+ ∀a′ ∈ A1, ∀a ∈ A, ∀k ∈ K . (4)

Here IN(v) is the set of arcs entering v, and OUT (v) is the set of arcs leaving v.
In this model, the variables xka represent the flow of commodity k ∈ K on arc a ∈ A.

This model is a bilinear bilevel program, since the upper level is linear in the tar-
iff variables and the lower level is linear in the arc choice variables (van Hoesel, 2008),
resulting in a non linear formulation in the combination of these variables.

Observe that once the tariffs are defined, one can easily choose among all s-t paths
of minimum total cost one path that maximizes the revenue. In other words, we assume
that the follower always makes the best choice for the leader. A naturally extension of the
NPP is to allow negative tolls. In this case, the values are incentives to travellers take this
routes. In this work we limit only to non-negative tolls.

A mixed integer linear formulation is provided for this problem in Labbé et al.
(????). This model was obtained by replacing the lower level problem by its optimality
conditions. Thus, an arc formulation for NPP has been formulated as follows:

max
∑
k∈K

∑
a∈A1

dkt
k
a (5)

subject to

λki − λkj ≤ ca + Ta ∀a = (i, j) ∈ A1,∀k ∈ K (6)

λki − λkj ≤ ca ∀a = (i, j) ∈ A2,∀k ∈ K (7)∑
a∈A1

(
cax

k
a + tka

)
+
∑
a∈A2

cax
k
a = λkd(k) − λko(k) ∀k ∈ K (8)

∑
a∈IN(v)

xka −
∑

a∈OUT (v)

xka =


−1, if v = d(k)

1, if v = o(k)

0, otherwise
∀v ∈ N, ∀k ∈ K (9)

−Mxka ≤ tka ≤Mxka ∀a ∈ A1,∀k ∈ K (10)

−M
(
1− xka

)
≤ tka − Ta ≤M

(
1− xka

)
∀a ∈ A1,∀k ∈ K (11)

xka ∈ {0, 1} , tka, Ta ∈ <+ ∀a ∈ A1,∀k ∈ K (12)

xka ≥ 0 ∀a ∈ A2,∀k ∈ K (13)

λkv ≥ 0 ∀v ∈ V, ∀k ∈ K (14)
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Objective function (5) maximizes the revenue of the demand of each commodity
that traverses the tarrifed arcs. Constraint set (6) and (7) defines the weight distance from
the vertices. Constraint set (8) helps to define the tariffs of the tarrifed arcs based on the
vertice distances. Constraint set (9) guarantees flow conservation. Constraint set (10) and
(11) set the tariffs only on arcs with flow, and the last constraint sets define the domain of
the variables (12)–(14) .

This model can be improved in the case of having many commodities with a same
destination. The set of variables λkv ,∀ v ∈ V and ∀k ∈ K can be replaced by a set of
variables λqv,∀v ∈ V and ∀q ∈ Q where Q is the set of all destination nodes. For a large
number of commodities |Q| � |K| this modification reduces the number of variables in
comparison to the original model.

3. A biased random-key genetic algorithm
In this section we briefly describe the biased random-key genetic algorithm

(RKGA) proposed to solve the NPP. A random-key genetic algorithm (RKGA) is a meta-
heuristic, originally proposed by Bean (1994), for finding optimal or near-optimal solutions
to optimization problems. RKGAs encode solutions as vectors of random keys. A RKGA
starts with a set (or population) of p random vectors of size n. Parameter n depends on
the encoding while parameter p is user-defined. Starting from the initial population, the
algorithm generates a series of populations through generations.

RKGAs rely on decoders to translate a vector of random keys into a solution of the
optimization problem being solved. A decoder is deterministic algorithm that takes as input
a vector of random keys and returns a feasible solution of the optimization problem as well
as its cost (or fitness). At the k-th generation, the decoder is applied to all newly created
random keys and the population is partitioned into a smaller set of pe elite solutions, i.e.,
the best fittest pe solutions in the population and another larger set of p− pe > pe non-elite
solutions. Population k + 1 is generated as follows. All pe elite solutions of population
k are copied without change to population k + 1. This elitist strategy maintains the best
solution on hand. In biology, as well as in genetic algorithms, evolution only occurs if
mutation is present. As opposed to most genetic algorithms, RKGAs do not use a mutation
operator, where each component of the solutions is modified with small probability. Instead
pm mutants are added to population k + 1. A mutant is simply a vector of random keys,
generated in the same way a solution of the initial population is generated.

With pe + pm solutions accounted for in population k + 1, p − pe − pm additional
solutions must be generated to complete the p solutions that make up population k + 1.
This is done through mating or crossover. In the RKGA of Bean (1994), two solutions are
selected at random from the entire population. One is parent-A while the other is parent-
B. A child C is produced by combining the parents using parameterized uniform crossover
(Spears and DeJong, 1991). Let ρA > 1/2 be the probability that the offspring solution
inherits the key of parent-A and ρB = 1 − ρA be the probability that it inherits the key of
parent-B, i.e.

ci =

{
ai with probability ρA,
bi with probability ρB = 1− ρA,

where ai and bi are, respectively, the i-th key of parent-A and parent-B, for i = 1, . . . , n.
This crossover always produces a feasible solution since c is also a vector of random keys
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and by definition the decoder takes as input any vector of random keys and outputs a
feasible solution.

Biased random-key genetic algorithms (Gonçalves and Resende, 2011) differ from
Bean’s algorithm in the way parents are selected. In a BRKGA parent-A is always selected
at random from the set of pe elite solutions while parent-B is selected at random from the
set of p − pe non-elite solutions. The selection process is biased since an elite solution
s has probability Pr(s) = 1/pe of being selected for mating while a non-elite solution s̄
is selected with probability Pr(s̄) = 1/(p − pe). Since usually p − pe > pe, in this case
Pr(s) > Pr(s̄). In addition, elite solutions have a higher probability of passing on their
random keys since probability ρA > 1/2. Though the difference between RKGAs and
BRKGAs is small, the resulting heuristics behave quite differently. Experimental results
in Gonçalves et al. (2012) show that BRKGAs are almost always faster and more effective
than RKGAs.

To describe a BRKGA, one need only show how solutions are encoded and de-
coded, what choice of parameters p, pe, pm, and ρA were made, and how the algorithm
stops. We describe encoding and decoding next and give values for parameters as well as
the stopping criterion in Section 4.

Solutions are encoded as a k-vector of random keys, where k=|K|, the cardinality
of the tariffed arcs (A1) in the network. Each random key corresponds to a tariff. Each arc
a ∈ K has a tariff in the interval [0, tmax]. Let d0k the distance from node s to node t of
the commodity k when the tariffed arcs are defined to zero and d∞k the distance from s to t
for commodity k when the tariffed arcs are defined to a large value. Thus, a natural upper
bound tmax on the value of a tariff on the network is given by

tmax = max
k∈K

{
d∞k − d0k

}
.

Two kinds of initial solutions are generated. The model (6)-(14) was solved with
constraint (12) relaxed. This generates one feasible solution. We observed that the values
of tariffs of this solution are, in most cases, an upper approximation of the tariffs of the
optimal solution. All other solutions are randomly generated. We use this upper bound to
limit the tariff values and for providing an initial solution for the BRKGA. Each random
solution is then generated by setting the keys to a value up to the value found in the solution
generated by the relaxed model.

Demands are routed forward to their destinations on shortest weight paths. Observe
that tariffed links have weights equal to their fixed cost plus their tariffs (ca + ta) and
untariffed links have only a fixed cost (ca). For each commodity, all paths of minimum
cost are evaluated and the demand is sent by the higher cost path. In the case of a tie, the
path with the higher number of tariffed arcs is selected. Finally, in case of a second tie, the
tie is break using the outgoing arc with the lowest index. Once the demands are routed, the
revenue of each tariff can be computed for all commodities. The solution fitness value is
then calculated.

Two additional features are implemented to maintaining the diversity of the popu-
lation. First, at each generation, if two individuals have the same fitness value we apply
a perturbation on each of them. A value δ ∈ [−d, d] where d = dtmax ∗ 0.1e is added to
each tariff value. Note that the key value limitation between [1, tmax] should be respected.
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Moreover, the population is restarted after 50 generations without improvement of the best
solution. This is done by replacing all individuals (except the one with best fitness) by
random generated individuals, as it was done in the construction of the initial population.

4. Computational results
In this section we present computational experiments with the models and algo-

rithms presented in the previous sections. Initially, we describe the dataset used in the
experiments. Then, we detail some experiments with CPLEX applied on the mathematical
model (5)–(14) and a components based on the relaxation of this model added to a basic
implementation of the BRKGA that help to improve the results. Finally, preliminary results
for the BRKGA are reported with some considerations.

The experiments were done on a computer with an Intel Core i5 2300 processor
running at 2.80 GHz, with 4 GB of DDR3 RAM of main memory, and Ubuntu 12.10
Linux operating system. The BRKGA was implemented in C++ and compiled with the
g++ compiler, version 4.7.2. We used CPLEX 12.41 (API C++) with default configuration.

Three types of networks are used in the first experiment, as show in Figure 1.

Figure 1. Network structures: (a) Grid network; (b) Delaunay network; (c) Voronoi network.

For each edge from the original structure two directed arcs with opposite directions
were created. A random weight ca ∈ [1, cmax] is assigned to each one. Distinct origin and
destination nodes of each commodities are also randomly chosen, as well as the demand is
randomly generated in the interval [1, dmax] (by default dmax = 20).

Tariffed arcs are selected based on the description provide on Brotcorne et al.
(2000). However, some changes were made in order to increase the number of trav-
ellers through tarrifed arcs for increasing the difficulty to solve the problem. Shortest paths
are then calculated. The frequency that each arc belongs to a shortest path is computed.
The first |A1|/2 arcs are selected considering the decreasing order of frequencies and the
weights of these arcs are increased by a large value (usually a maximum integer represen-
tation). Their frequency count are also increased by a large value (it was used |A|). Next,
considering the new values of weights, the demands are routed again and the frequencies
are updated. Finally in a decreasing order of frequencies, the tarrifed arcs are selected.
Once a arc is tarrifed, a test is performed to check if there is at least one untariffed path
from each commodity. If there is no such a path, the toll is removed and the next arc is
selected to receive the toll. This process is repeated until K tariffs are assigned.

1www-01.ibm.com/software/integration/optimization/cplex-optimizer

3652

 www-01.ibm.com/software/integration/optimization/cplex-optimizer


XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Sets of instances are created with 200, 500 and 1000 arcs (the exact number of arcs
can vary according to the network structure). The fixed maximum weight of arcs cmax

is defined to10 and 30. The number of origin-destination pairs is selected from 50, 200
and 500, and the proportion of tariffed arcs from 10% and 20%, generating a total of 108
instances2.

4.1. Results for the mathematical model

This section reports experiments with CPLEX running the model (5)–(14) consid-
ering the subset of instances with 200 arcs from Table 1.

The columns present the name of the instances, the CPLEX gap and the compu-
tational time (limited to 1h run). The name of each instance is composed by the network
structure, #arcs, #o-d pairs, and the max arc weight dmax. A ‘-’ in the table indicates the
cases in which the computer memory was exceeded and then the run was interrupted.

Table 1. Computational results for the mathematical model.

K = 10% K = 20%
Instance gap Time(s) gap Time(s)
Grid-0200-0050-10 0,00 9,94 3,46 3.600,23
Grid-0200-0050-30 0,00 2,69 0,00 126,57
Grid-0200-0200-10 - - 200,09 3.600,66
Grid-0200-0200-30 54,24 3.600,32 286,44 3.600,98
Grid-0200-0500-10 451,26 3.601,28 366,22 3.600,13
Grid-0200-0500-30 734,92 3.600,06 1.974,75 3.600,08
Delaunay-0200-0050-10 0,00 1,44 0,00 2,88
Delaunay-0200-0050-30 0,00 11,33 0,00 105,05
Delaunay-0200-0200-10 0,00 104,75 13,41 3.606,50
Delaunay-0200-0200-30 1,74 3.601,21 11,37 3.605,06
Delaunay-0200-0500-10 118,84 3.602,50 731,74 3.600,06
Delaunay-0200-0500-30 - - 604,50 3.601,28
Voronoi-0200-0050-10 0,00 1,57 0,00 169,75
Voronoi-0200-0050-30 0,00 6,67 0,00 1.099,20
Voronoi-0200-0200-10 5,08 3.600,49 117,19 3.600,79
Voronoi-0200-0200-30 3,99 3.600,39 92,02 3.600,58
Voronoi-0200-0500-10 - - - -
Voronoi-0200-0500-30 - - - -

As expected, Table 1 shows that a higher number of tarrifed arcs increases the
difficulty of the solver to prove optimality. The same is caused by the increase of the
number of commodities. This occurs because the variables of this model are directly related
to these parameters.

A relaxed version of the model was also solved. Despite the relaxation, the solver
provides fractional values of tariffs. The revenue is computed considering these tariffs. The
solution value is about 40% less of the optimal values found in the previous experiment.
The relaxed solutions are on average better than a random generated solution. In a set of

2Available at inf.ufrgs.br/˜fstefanello
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1000 random solutions for each instance, the average gap quality is around 64% less than
the quality of the relaxed solution. Related to the best of 1000 random solutions, the gap is
still 20% less of the quality of the relaxed solution.

Analyzing the results, it was observed that for almost all arcs the tariffs are higher or
equal than the optimal tariff values. Comparing the values of tariffs on the relaxed solution
with the tariffs of the optimal solutions obtained in the previous experiment, 42.5% of
the values of tariffs are equal to the optimal solution, and 43.66% have higher values,
while only 13.82% are smaller values. Furthermore, the average of difference between
the values is 3.21 units, meaning that the obtained tariff values are close to the optimal
ones. Thus, these values can be used as an upper bound for the tariff values, providing
a good approximation. The time to compute this solution is less than 2 seconds for the
instances from Table 1. This represents less than 3% of the BRKGA time reported in the
next section.

4.2. Results from the biased random-key genetic algorithm

This section shows results obtained with the biased random-key genetic algorithm
applied to a larger set of large scale instances of the NPP.

The experiments with the BRKGA were done with a population size of p = 50, an
elite set of size pe = 0.25p, a mutant set of size pm = 0.05p, and an elite key inheritance
probability of ρA = 0.7.

Table 2 shows the results obtained, averaged over ten runs with different random
seeds and using as stopping criterium 2000 generations of the BRKGA. In this table we
report the best know solution value (Best), found by the CPLEX in the previous experi-
ment (presented in bold if is optimal) or an extended execution of the BRKGA to 3000
generations. The columns Relax and Time(s) report the CPLEX results for solving the re-
laxed model (5)–(14). The column Relax shows the total revenue calculated with the tariffs
obtained by the solver. Since the tolls values in the relaxed version can be non-integer, the
revenue can also be fractional. The column Time(s) show the running time of the solver
in second. The columns Avg, Max, SD and Time(s) report respectively the values of the
average revenue, best revenue, standard deviation and the computational time in seconds
for the BRKGA. The reported running time is not cumulative with the running time of the
relaxed model. Finally, we report results for the cases where 10% and 20% of the arcs are
tariffed.

3654



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 2. Computational results for the BRKGA.
K = 10% K = 20%

Instance Best Relax Time(s) Avg Max SD Time(s) Best Relax Time(s) Avg Max SD Time(s)
Delaunay-0200-0050-10 747 652.0 0.1 747.0 747 0.0 39.4 1473 1,090.0 0.1 1,472.6 1,473 1.3 37.7
Delaunay-0200-0050-30 1814 1,290.3 0.1 1,799.0 1,807 5.7 37.4 3144 2,526.0 0.1 2,985.3 3,114 82.4 38.1
Delaunay-0200-0200-10 2236 1,666.0 0.5 2,236.0 2,236 0.0 86.4 3339 2,179.4 0.7 3,270.6 3,331 30.2 83.9
Delaunay-0200-0200-30 6451 4,560.0 0.7 6,388.6 6,451 47.4 76.7 14001 8,293.9 0.8 13,612.4 13,876 148.1 75.4
Delaunay-0200-0500-10 6473 3,722.6 2.7 6,473.0 6,473 0.0 169.7 9599 6,125.5 2.6 9,432.4 9,599 111.2 153.5
Delaunay-0200-0500-30 15507 8,500.8 2.8 15,419.4 15,492 52.1 143.9 24540 14,621.5 4.3 23,799.0 24,540 457.2 142.4
Delaunay-0500-0050-10 1227 1,008.0 0.4 1,222.1 1,227 4.5 105.4 2048 1,710.0 0.5 2,028.9 2,048 12.1 109.3
Delaunay-0500-0050-30 3849 2,224.4 0.5 3,756.4 3,847 52.2 94.5 4774 3,457.0 0.6 4,611.0 4,774 146.3 96.6
Delaunay-0500-0200-10 3089 2,160.5 3.1 3,058.5 3,089 12.8 241.4 6495 4,304.7 4.0 6,318.0 6,430 99.8 237.0
Delaunay-0500-0200-30 11961 8,044.6 3.5 11,786.6 11,961 101.1 219.5 19756 12,595.3 3.9 19,199.4 19,663 208.0 220.4
Delaunay-0500-0500-10 7354 4,446.9 9.3 7,256.6 7,343 69.1 354.6 13980 8,046.2 11.0 13,546.2 13,861 153.5 358.4
Delaunay-0500-0500-30 26640 13,822.5 10.4 26,167.9 26,619 432.9 334.9 39004 21,382.8 10.8 37,988.9 38,890 586.6 327.4
Delaunay-1000-0050-10 1696 1,239.4 1.5 1,688.3 1,696 6.3 232.2 2388 1,971.0 2.1 2,359.5 2,383 15.8 237.0
Delaunay-1000-0050-30 4410 3,277.0 1.6 4,309.8 4,407 72.0 216.4 7580 6,050.0 3.1 7,417.1 7,515 69.4 218.8
Delaunay-1000-0200-10 5601 3,763.5 7.0 5,536.4 5,600 51.7 654.0 9155 6,300.9 11.5 8,964.6 9,102 104.8 646.4
Delaunay-1000-0200-30 15018 8,189.4 11.5 14,716.6 14,949 158.9 609.3 29476 19,014.3 13.2 28,696.3 29,389 478.2 612.4
Delaunay-1000-0500-10 16612 9,064.0 24.2 16,290.5 16,486 222.2 943.3 25151 13,970.9 36.2 24,656.9 25,149 304.7 939.9
Delaunay-1000-0500-30 25710 16,614.3 27.2 25,373.7 25,685 269.1 907.1 61565 34,601.9 35.9 60,098.7 61,015 551.0 895.9
Grid-0200-0050-10 3893 2,227.0 0.2 3,893.0 3,893 0.0 51.2 5525 4,094.1 0.2 5,313.7 5,441 81.8 52.1
Grid-0200-0050-30 6543 4,508.1 0.2 6,496.7 6,501 2.9 45.6 14151 10,704.0 0.2 13,694.5 14,012 162.9 49.2
Grid-0200-0200-10 10454 5,537.4 1.0 10,407.9 10,454 39.5 109.6 15898 8,470.5 1.3 15,620.3 15,898 252.1 110.7
Grid-0200-0200-30 23760 13,129.1 1.0 23,065.9 23,672 421.9 99.4 49638 25,584.2 1.3 48,745.1 49,638 1,054.4 101.8
Grid-0200-0500-10 18945 10,586.6 2.9 18,825.5 18,945 82.3 206.1 34367 17,619.1 3.3 33,905.8 34,342 259.2 203.2
Grid-0200-0500-30 56834 27,783.2 3.7 55,965.1 56,580 614.8 186.6 94813 41,060.2 4.4 91,049.2 93,937 1,869.4 192.4
Grid-0500-0050-10 6779 3,834.0 1.1 6,711.6 6,779 54.6 133.8 10103 5,395.2 1.7 9,719.6 10,065 316.9 136.2
Grid-0500-0050-30 7223 4,312.0 0.9 7,099.1 7,211 76.7 123.7 16499 13,211.4 1.3 15,890.0 16,370 363.3 126.1
Grid-0500-0200-10 11227 6,321.8 4.8 11,067.3 11,213 72.4 344.9 23527 11,657.4 4.2 23,002.8 23,450 368.3 355.7
Grid-0500-0200-30 40486 21,479.2 4.8 38,827.3 40,301 913.1 335.8 75548 32,123.7 5.9 73,920.6 75,464 1,241.8 332.3
Grid-0500-0500-10 17662 8,457.0 14.2 17,491.9 17,636 109.5 539.1 54182 18,837.3 16.2 52,598.8 53,999 1,041.1 601.5
Grid-0500-0500-30 79060 36,411.6 14.1 77,912.9 79,007 795.7 524.9 129323 57,971.3 21.7 125,633.8 128,804 2,106.5 534.4
Grid-1000-0050-10 5612 4,040.0 4.1 5,508.6 5,608 55.3 276.2 11697 8,743.0 7.3 11,336.8 11,665 150.5 277.5
Grid-1000-0050-30 12731 8,129.0 4.7 12,342.1 12,604 280.6 264.4 24309 20,187.3 9.5 22,152.5 23,716 796.9 300.7
Grid-1000-0200-10 20265 8,740.1 15.5 20,008.7 20,237 158.4 865.8 37919 16,049.5 25.3 36,895.8 37,300 298.8 895.9
Grid-1000-0200-30 53043 20,330.4 13.9 51,180.6 53,012 939.0 840.3 91484 47,980.6 24.0 87,838.7 91,253 2,780.3 828.7
Grid-1000-0500-10 40893 13,270.9 54.0 40,353.4 40,844 406.6 1,497.0 71311 26,301.5 76.2 69,605.2 70,894 753.4 1,501.9
Grid-1000-0500-30 80735 33,753.0 45.3 79,056.6 80,327 1,108.0 1,369.6 192204 71,360.8 66.3 185,104.5 190,730 3,046.9 1,363.6
Voronoi-0200-0050-10 1559 1,263.8 0.2 1,559.0 1,559 0.0 58.1 3643 2,799.0 0.2 3,391.4 3,511 76.9 60.5
Voronoi-0200-0050-30 4259 2,896.1 0.2 4,149.2 4,204 27.1 54.8 8550 7,251.5 0.2 7,980.6 8,333 163.5 57.9
Voronoi-0200-0200-10 5563 3,621.4 1.0 5,518.9 5,563 40.7 130.6 11535 7,423.3 1.4 11,423.1 11,535 91.2 134.5
Voronoi-0200-0200-30 20048 11,523.0 1.1 19,826.0 20,048 290.8 120.4 37669 23,367.5 1.5 37,009.2 37,665 506.6 119.0
Voronoi-0200-0500-10 11002 7,248.7 3.4 10,785.7 11,002 183.4 195.2 42877 21,236.2 3.5 41,801.0 42,546 763.4 206.3
Voronoi-0200-0500-30 45009 22,606.0 3.9 44,417.0 44,987 617.3 195.8 80054 42,007.3 4.3 78,602.0 79,849 638.9 198.3
Voronoi-0500-0050-10 4064 2,949.2 1.3 4,001.2 4,064 29.5 137.2 8315 5,663.6 1.6 8,116.0 8,290 85.6 141.4
Voronoi-0500-0050-30 9144 5,500.7 1.1 8,785.9 9,089 215.3 157.3 21317 19,580.0 1.7 21,100.9 21,313 156.0 164.0
Voronoi-0500-0200-10 7940 4,599.3 5.3 7,828.0 7,940 84.6 416.4 18080 12,411.0 5.0 17,610.7 18,033 266.9 421.4
Voronoi-0500-0200-30 33699 18,590.5 4.6 32,539.8 33,547 640.0 411.5 72276 44,523.4 6.6 70,345.8 71,915 1,226.7 417.1
Voronoi-0500-0500-10 20377 10,262.8 14.3 19,927.3 20,244 252.7 681.1 48475 24,588.8 18.6 47,365.8 48,111 597.1 702.6
Voronoi-0500-0500-30 75253 32,314.0 17.5 73,406.3 74,777 943.8 674.9 138913 55,682.3 23.0 135,419.4 137,742 1,753.8 674.1
Voronoi-1000-0050-10 4795 3,492.3 2.6 4,737.8 4,784 22.7 320.5 10806 9,382.0 4.6 10,721.7 10,777 39.7 337.9
Voronoi-1000-0050-30 11162 9,787.0 3.2 11,071.0 11,161 91.9 322.7 22135 18,066.0 7.2 21,183.6 22,119 650.4 335.5
Voronoi-1000-0200-10 12014 7,579.0 15.6 11,496.6 11,984 261.1 985.8 31665 20,183.9 28.2 30,933.8 31,490 348.8 998.1
Voronoi-1000-0200-30 40808 26,114.4 15.2 39,592.2 40,488 510.3 1,038.8 71007 44,108.7 21.5 68,606.4 70,347 821.8 1,050.3
Voronoi-1000-0500-10 32399 15,755.9 48.6 31,902.9 32,299 354.3 1,869.8 83231 44,191.7 66.9 81,426.4 82,926 1,093.8 1,934.6
Voronoi-1000-0500-30 88483 38,070.3 61.1 85,783.4 88,051 1,625.9 1,827.7 226550 146,376.1 65.2 218,943.5 223,702 2,974.4 1,890.9
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For the small instances, the BRKGA found the optimal solution or slightly less
revenue than the optimal solution value. This indicates that at least for this set of instances,
the proposed algorithm has a good performance and we expect similar behavior for the
other sets of instances. Related to the network structure, we observed that the grid networks
have an average of standard deviation and running times slightly worse than the other
structures. This occurs because in this kind of network structures the path length for each
commodity tends to be higher than in Voronoi and Delaunay networks. By the same reason,
in this kind of structures the revenue tends to be higher.

In the instances with weights ca between [1, 30] we observed that the standard de-
viation is worse than in the case with weight between [1, 10]. Naturally this behavior is
expected because in the first case a higher variation of the tariff values and revenue are
observed.

The running times of the algorithm is sensible to the number of arcs, commodities
and slightly by the network structure. On the other hand, is not sensible to other parameters,
specially to the percentage of tarrifed arcs. We also observed that the computational times
are acceptable considering the size of the instances.

5. Conclusions
In this paper we presented a preliminary study of the network pricing problem.

A biased random-key genetic algorithm is proposed to solve the problem and a set of
experiments was performed in a set of diverse and large scale network instances.

In the experiments we observed that the relaxation of the arc formulation mathe-
matical model solved by CPLEX provides a hight quality initial solution and a good ap-
proximation for an upper bound of the tariff values. Furthermore, CPLEX was not able
to solve the mixed integer version of this model for the large scale networks instances,
motivating the use of heuristics for solving the problem.

This first version of BRKGA shows a good performance of the algorithm, reaching
the optimal solution or a good approximation of the best revenue. We also evaluate some
characteristics and behaviors of the proposed algorithm on the tested instances.

Finally, as future works we aim at introducing a local search procedure to the
BRKGA. Moreover, we intend to use exact methods to solve subproblems as an inten-
sification criteria.
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