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ABSTRACT 
This paper presents  the preliminary results  of a research work on procedures for the determination of 
optimal maintenace policies under imperfect repair assumption. The topic was motivated by a real data set 
on failures of off-road trucks used by a mining company.  In particular, it  is discussed the determination 
and practical implementation of an optimal preventive maintenance policy using the ARA-1 (Arithmetic 
Reduction of Age) model  presented by Doyen and Gaudoin (2004).  Under such imperfect repair models, 
the expected number of failures (or mean function) at  time t is given by a general renewal function  with 
no closed form solution available.  In this work, two procedures to approximate the mean function are 
proposed. Optimal periodic maintenance policies are obtained  for the off-road  trucks engines,  using the 
the ARA-1 model and the two proposed approximation procedures.  

 

KEYWORDS: ARA-1 models; optimal maintenace policy; imperfect repair. 
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RESUMO 

Este artigo apresenta os resultados preliminaries de uma pesquisa em procedimentos para a determinação 
de políticas ótimas de manutenção sob a suposição de reparo imperfeito. O tópico foi motivado por um 
banco de dados real de falhas em off-road trucks utilizados por uma empresa de mineração. Em particular, 
discute-se a determinação e a implementacão prática de uma política optima de manuenção utilizando o 
modelo ARA-1 (Arithmetic Reduction of Age –Redução Aritmética da Idade), apresentado por Doyen e 
Gaudoin (2004). Nestes modelos de reparo imperfeito, o número esperado de falhas (or função média) no 
tempo t é dado por uma g-renewal function para a qual não há uma forma fechada. Neste trabalho, dois 
procedimentos para aproximar a funcão média são propostos. Políticas ótimas de manutencão são obtidas 
para os motores dos off-road trucks, utilizando o modelo ARA-1 e os dois procedimentos de aproximação 
propostos. 

PALAVRAS CHAVE: modelos ARA-1; política ótima de manutenção; reparo imperfeito. 

ÁREA PRINCIPAL:  1) Modelos Probabilísticos; 2) PO na Indústria.
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1. Introduction  
          There are important references that have proposed maintenance policies to repairable 
systems, in particular, combining PM and MR. It is fair to say that this combination has been of 
interest since the work by Barlow and Hunter (1960). The authors used elementary renewal 
theory to obtain two types of preventive maintenance policies, one which is most useful for 
simple systems (age replacement policy) and another for complex systems (block replacement 
policy). The latter proposes to perform minimal repairs (returning the system to an ABAO 
condition) up to a predetermined time when the system undergoes replacement or PM, returning 
it to an AGAN condition. The optimal policies obtained depend on the failure distribution, and 
were proved to be minimal cost solutions.  Other results  worth mentioning are the ones included 
in the works by Morimura (1970), Park (1979), Phelps (1981), Barlow and Proschan (1987), Park  
et al. (2000).    
          Gilardoni and Colosimo (2007) worked on a problem similar to the off-road truck engines 
but, under a MR environment. The authors applied Barlow and Hunter's block replacement policy 
in a real data set concerning failures histories of power transformers. They assumed perfect 
preventive maintenance actions (AGAN) and minimal repairs (ABAO) for failures ocurring 
between the PM actions. The goal was to find the optimal PM policy given by the check points at 
every τ  units of time. Using a Nonhomogeneous Poisson Process (NHPP) with intensity function 
λ(t)  modeled by a Power Law Process (PLP), the authors came up wih an expression of the 
limiting expected cost per unit of time. Consequently, the optimal PM policy τ can be obtained 

from a closed form expression, and one needs to have only: (1) the costs ratio ( 
CPM

CMR

) and (2) 

estimates for the PLP parameters, obtained from the observed failure data. The authors used 
Maximum Likelihood estimation and obtained approximate confidence limits for τ.  
          In other practical situations however, more realistic notions of repair somewhat 
intermediate between the two extremes AGAN and ABAO might be needed. Many models have 
already been proposed for imperfect repair effects (for a review see, for example, Pham and 
Wang (1996)). Among them, are the virtual age models proposed by Kijima  et al. (1988) and 
Kijima (1989). In particular, Kijima et al. (1988) adapted the block replacement policy by Barlow 
and Hunter (1960) to the assumption of IR, where the degree of efficiency of the repair is 
represented by the parameter θ(0 ≤θ ≤1) and includes ABAO and AGAN as special cases 
(θ =1  and  θ = 0 , respectively). The authors developed a virtual age model to describe the 
operation in time of a repairable system which is maintaned by an IR. But in this case, as opposed 
to the MR case developed by Gilardoni and Colosimo (2007), the integral 

Λ(t) = E N(t)[ ] = λ(u)
0

t
∫ du which denotes the expected number of failures in the time interval 

(0,t] does not have a closed form (it is a g-renewal function). To overcame this difficulty, an 
approximation procedure which can be used to find the optimal replacement periodicity under 
such conditions was proposed. Still, in the end, the usage of this approximation depends on the 
knowledge of the repair efficiency (θ  value) and the distribution of the lifetime distribution of a 
new system. Numerical examples were provided by the authors assuming the particular case of a 
Gamma distribution with given parameter values and different scenarios for cost ratios and repair 
efficiency. Yet, the model was not statistically studied.  
         Doyen and Gaudoin (2004) proposed two new classes of imperfect repair models. The 
repair effect is characterized by the change induced on the failure intensity before and after 
failure. In the first class of models, repair effect is expressed by a reduction of failure intensity 
(the so called Arithmetic Reduction of Intensity or ARI models). In the second class, repair effect 
is expressed by a reduction of the system virtual age (the so called Arithmetic Reduction of Age 
or ARA models). It is noteworthy that, the virtual age model proposed by Kijima \textit{et al.} 
(1988) corresponds to a particular case of ARA models, ARA-1. So, from now on, Kijima's 
model will be refered as ARA-1 in this article. Recently Pan and Rigdon (2009) and Corset et al.  
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(2012) used Bayesian analysis for the ARA and ARI classes of models but the focus was not on 
optimal maintenance policies. None of these works have already dealt with the problem of the 
jointly statistical estimation of the repair efficiency and the determination of an optimal 
maintenance policy. 
          The goal of this  research work is to generalize the approach adopted by Gilardoni and 
Colosimo (2007), now incorporating the class of imperfect repairs of Doyen and Gaudoin (2004), 
ARA-1. The degree of efficiency of the IR and the optimal PM periodicity parameter (τ ) are both 
estimated using inferential procedures based on the failure history of the systems. In order to 
make this task possible, a method to estimate  Λ(t)  and  λ(t)  under IR from the data  is also 
proposed. The method is applied to the failure histories of off-road engines (see Section 2). In 
this particular paper we present  the preliminary results of the research, namely, the data analysis 
of the engines. Specifically, we :  (1) use the history of failure times of the engines to estimate 
statistically the degree of efficiency of the imperfect repairs and (2) giving that information, find 
the optimal maintenance policy under imperfect repairs (OMP-IR), in other words, obtain the 
optimal PM check points (or periodicity $\tau$) that minimize expected total cost (preventive 
maintenance + corrective actions) under an environment of imperfect repairs. Other theoretical 
features of the IR models  (i.e. inferential properties, confidence interval coverage studies, etc.) 
are still under study (see Concluding Remarks and Future Research section).  
          The outline of the paper is as follows. Section 2 describes the motivating situation. In 
Section 3, the ARA-1 model is briefly presented along with the cost function. Section 4 deals 
with statistical methods. In particular, the expression of the likelihood function needed to find the 
model parameters estimates, namely, the intensity function and efficiency of repair parameters, is 
derived. Section 5 describes two procedures to approximate the mean function under the ARA-1 
model. They are necessary  to find the optimal PM policy (given by check points at every τ  units 
of time) . In fact, this is the main contribution of this paper. The proposed procedures are  applied 
to the off-road engines maintenance data and the results are presented in Section 6 (point and 
interval estimates for τ  are provided). Conclusions and final comments end the paper in Section 
7. 
 
 2.  Motivating Situation 
 
          This work was motivated by a real situation concerning engine failures on off-road trucks 
used by a Brazilian mining company. This company keeps a database with detailed descriptions 
of all maintenance actions performed on their off-road engines. The data used in this paper are a 
subset of such database, and include preventive (scheduled) and corrective (non-scheduled) 
maintenance records for a group of $143$ diesel engines, for which $208$ failure times were 
recorded. There were $50$ preventive maintenance actions during the follow-up period, each 
assumed to be a perfect repair action, returning the system to as-good-as-new (AGAN) condition. 
Consequently, the database is consisted, in fact, of $193=143+50$ engines. It is noteworthy that, 
in this paper, scheduled preventive maintenance (PM) actions, either an overhaul or a 
replacement by a new system, will be assumed to be a perfect repair.  
          Figure 1 presents plots of (a) events (failures) vs. operation time (in hours) and (b) the 
Nelson-Aalen nonparametric estimate (Aalen, 1978) of the mean function  Λ(t) , also known as 
Mean Cumulative Function (MCF). The convex shape of the MCF (Figure 1-b) indicates that the 
intensity function of failures is increasing, therefore justifying PM. According to the mining 
company, the cost of a corrective maintenance performed after a (unexpected) failure is 23% 
higher than the cost of a preventive maintenance. Hence, the company wants to adopt a 
maintenance policy that favors preventive maintenance, as opposed to repair actions taken after 
failures. 
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Figure 1: (a) Events (failures) vs. operation time (in hours); (b) Mean Cumulative Function 
(MCF) 
 
3. Cost function and optimal PM under ARA-1 model 
 
          Consider a system which is subject to failure, and that is put in operation at time t = 0 . 
Assume the following conditions: 
1. PM check points are scheduled after every τ  units of time; 
2. at each PM check point, a repair action (or a replacement) of fixed cost CPM  is 

executed,which instantly returns the system to an AGAN condition; 
3.  between successive PM check points, an IR of degree  θ(0 ≤θ ≤1)   is done after each 

failure; 
4. the expected cost for each IR action ; 
5. repair costs and failure times are independent; 
6. repair times are neglected. 
 
          Let N(t)  be the number of failures in the time interval (0,t].  The PM policy that 
minimizes the long run expected cost per unit of time  is the value of  τ that satisfies (Gilardoni 
and Colosimo, 2007): 
 

                                                     τλ(τ )−Λ(τ ) = CPM

CIR

                                                     (1) 

 
Note that only the ratio between costs must be considered, what simplifies the application in 
practice. Under the imperfect repair assumption, some functional forms for λ(t)  have been 
proposed in literature. ARA-1 model uses the notion of virtual age Vn =θTn  where Tn  is the 

random variable representing the real age of the system at the nth failure (the elpased time since 
the initial start-up of the system),  and    Vn  is the virtual age of the system immediately after the  

nth repair. If  θ =1 , it follows that   Vn = Tn , in which case it is assumed that a MR is performed. 
This assumption makes the underlying failure process a NHPP. Futhermore, if  θ = 0 , then 
Vn = 0 , indicating that the system is renewed after each repair and the resulting process is a 
Renewal Process.  The failure intensity function of the system under ARA-1 model is given by: 
                                            
                                                λ(t) = λR (t − (1−θ )TN (t ) )                                        (2) 
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where TN (t )  denotes the elapsed time since the initial start-up of the system and the occurrence of 

the  Nth failure and λR  is the failure intensity function corresponding to the condition of minimal 
repair (reference function). With the intensity function (2), it can be shown (Kijima  et al.,1988) 
that the expected number of failures (or mean function) at time τ   is given by  

                                             Λ(τ ) = E λR (t − (1−θ )TN (t ) )#$ %&
0

τ

∫ dt                                   (3) 

There is no closed form solution for equation (3) , except on the special case of θ =1 (minimal 
repair). Approximate methos have been proposed for the general case (3) (Kijima et al., 1988; 
Yevkin and Krivtsov, 2000). However, none of these Works have proposed a method with 
desirable statistical properties and capable of using the observed failure histories to deal with the 
following three issues at the same time, namely: (1) the estimation of the parameters involved in 
Equation 2, (2) the calculation of an approximation for the mean function Λ(t) (Equation 3) and 
(3) the combination of (1) and (2) to solve Equation 1 for τ . For practical purposes, the first step 
to find the optimal PM policy is to estimate the model parameters. Section 4 introduces some 
additional notation and presents the likelihood function for this IR model. In special, inference 
procedures for the parameters of the Power Law Process.  
 
4. Parameter Estimation: Likelihood Function 
 
          The likelihood function is constructed here assuming that among the k  observed repairable 
systems, k1  are time truncated and k2  are failure truncated,  k1,k2 =1,2,…,k  and  k1 + k2 = k . 
Let  µ denote the vector of model parameters. It includes the parameters indexing the process 
intensity function and the repair efficiency parameter θ . For example, if the PLP is used (Crow, 
1974), then, the reference intensity function in Equation  2  and its associated mean function are 
given, respectively by 

         λR (t) =
β
η

t
η

!

"
#

$

%
&

β−1

   and  ΛR (t) = λ R (u)du =
t
η

"

#
$

%

&
'

β

0

t

∫ ;η,β, t > 0                                 (4) 

 where β  (shape parameter) represents how the system deteriorates or improves over time, and 

η is a scale parameter. In this case,  µ = (β;η;θ )t  (a  3x1 vector). Using the induced intensity 
function of the ARA-1 model (Equation 2)  and the PLP  (Equation 4),  the loglikelihood function 
takes the form: 
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According to Zhao and Xie (1996), it can be assumed that µ̂ = argmaxL(µ) follows 
approximately a multivariate normal distribution, with mean µ  and covariance matrix Σ  given 
by minus the inverse of the Hessian matrix of  l(µ) = logL(µ)  evaluated at µ̂ . The Hessian is 
given by 
 

                                               H = −
∂2l(µ)
∂µ∂µ t

#

$
%

&

'
(                                                            (6) 

Hence, asymptotic theory can be used to construct confidence intervals for the parameters. 
 
5. Proposed procedures to obtain the optimal PM. 
 
          For practical purposes, it is necessary to estimate the optimal maintenance periodicity τ  
using the failure history of the systems under study. However, as it was mentioned in Section 2, 
there is no closed form solution for the g-renewal function given by Equation 3. In this Section, 
two procedures to estimate the mean and intensity functions (Λ(t)  and λ(t) , respectively), from 
the data are proposed.  These estimates obtained by each one of the procedures are then used in 
the cost function (Equation 1) to calculate a point estimate of the PM periodicity parameter τ . 
Subsequently, confidence intervals for τ  are obtained using Bootstrap resampling method. In 
either one of the procedures, the mean function Λ(t) is estimated using a combination of Monte 
Carlo simulation and the Nelson-Aalen nonparametric procedure (Aalen, 1978), also known as 
Mean Cumulative Function (MCF). In the sequel, we use the term MCF whenever we refer to the 
Nelson-Aalen estimate. The steps of the proposed procedures are ilustrated using the PLP but it 
can be applied to any other parametric form chosen for the (reference) intensity function (λR (t) ).  

         For both procedures,  the first step is to obtain the MLE’s  η̂, β̂ (PLP parameters) and θ̂  
(repair efficiency) using the observed failure history of the systems under study. Next (step 2) 
k=10,000 sistems are generated (Monte Carlo Simulation). The failure histories of those systems 
were generated using the point estimates  η̂, β̂ (PLP parameters) and θ̂  (repair efficiency) 
obtained in step 1. From the next step on (step 3)  the main diferences among the two procedures 
are basically the following.  
          In the first procedure,  which will be refered to throughout this paper as polinomial 
approach, the generated failure histories (k=10,000 systems) are used to find the MCF  Λ̂(t)  and 

a second order polinomial is fitted (by least squares) to the points (

Λ(t);t)  in order to 

approximate this step function. The first derivative leads to the funcitonal form of λ̂(t) . In the 
second procedure, which will be refered to thoughout this paper as GCM (Greatest Convex 
Minorant) approach,  one  first applies a TTT-transformation (Total Time on Test 
transformation) to the  the generated failure histories of the k=10,000 systems, then constructs the 
MCF estimate Λ̂  . Following Gilardoni and Colosimo (2011), an estimate λ̂(t)   of λ(t) , which 
takes into account the monotonicity constraint can now be obtained as  the derivative of the 
greatest convex minorant of the MCF estimate Λ̂ .  The TTT-transformation is necessary in order 
to make sure that the good properties of the estimate  are preserved (see Gilardoni and Colosimo, 
2011 for details).   
          In both cases, a point estimate for the optimal PM periodicity parameter τ  (namely τ̂ pol  

and τ̂GCM ) is obtained using given cost ratios and solving Equation 1 for τ . 
           
5.1 Confidence intervals  
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          Appropriate confidence intervals for the optimal PM periodicity are obtained using 
nonparametric Bootstrap resampling method (Efron and Tibshirani, 1986). The method consists 
of resampling with replacement B (B large) samples from the original database. Each resample 
has the same size as the original data set. For the off-road engines, for example, the database 
consists of 193 engines. Thus, each one of the B resamples has 193 engines resampled with 
replacement from the original database. Here, we use B=1,000.  The two procedures (polinomial 
and GCM)  described previously are then applied to each one of the B resamples, thereby 
obtaining B bootstrap estimates for  τ , denoted here by τ poli

* (i =1,…,B)  and τGCMi

* (i =1,…,B)  

(polinomial and GCM procedures, respectively). The (1−α)×100%CI for τ , given by the 

polinomial procedure  is then given by the limits (τ̂ pol[l ]
* ;τ̂ pol[u]

* ) , where τ̂ pol[i]
* , (i =1,…,B)  are 

the bootstrap estimates obtained by the polinomial procedure, sorted in increasing order,  
l = B× (α 2)  and  u = B× (1−α 2) , l  and u  rounded to the smallest and largest nearest 
integers, respectively.  The confidence interval based on the GCM method is obtained similarly.  

6. Motivating situation revisited 
          The analyses were done using a script written in R, a language and environment for 
statistical computing (www.R-project.org, v.2.15). The goal here is twofold (1) estimate the 
degree of efficiency of repairs and (2) obtain the optimal PM check points that minimize 
expected total cost.  
          We start with parameter estimation by finding the MLEs of the PLP parameters (β  and η ) 
and the degree of repair parameter θ . Next, we use the two procedures briefly described in 
Section 5 and get  point estimates for the periodicity parameter τ along with 95% (bootstrap) 
confidence intervals.. Finally, we compare the results under IR to the ones obtained assuming 
PLP and MR, as proposed by Gilardoni and Colosimo (2007).  
          Under the general assumption of IR,  a ARA-1 model was applied and the likelihood 
function described in Section  4 was used to obtain the following MLEs and CIs for the 
parameters: β̂ = 2.458(2.185;2.765),η̂ =15,585(14, 605;16, 633) andθ̂ = 0.471(0.330;0.673) . 
Note that the estimated value for θ and the corresponding confidence interval suggest that the 
repair actions after failures are neither minimal (θ =1 ) nor perfect repairs (θ = 0 ). Therefore, 
the traditional modeling assumptions are inappropriate for the off-road engines, reassuring the 
relevance of the methodology proposed in this paper.  
          The two procedures described in Section 5 were used to estimate the optimal maintenance 
time under the IR assumption(namely τ̂ pol  and τ̂GCM ) , using K =10,000 and B =1,000 . Also, 
a truncation time T = 40,000  h was used;  that corresponds to the time range in the observed 

data. For the polynomial procedure, the fitted curve was ̂Λ(t) = 8×10−6 t + 2.9×10−9 t2  and 
seemed to provide a good approximation for the step function.     
          Recall that according to the mining company, the cost of a corrective maintenance 
performed after a (unexpected) failure is 23% higher than the cost of a preventive maintenance.  
Therefore,  point estimates (and confidense intervals) for the optimal PM periodicity parameter  
τ  were obtained  for the ratio  value CIR CPM =1.23  using the polinomial ( τ̂ pol  ) and the GCM 

procedure ( τ̂GCM ).  In  addition,  an estimated value was also obtained using the modeling 
approach presented by Gilardoni and Colosimo (2007), i.e., assuming PLP and MR. Although 
asymptotic theory can be used to construct confidence intervals under the MR assumption,  
bootstrap confidence intervals were also obtained for that case, for the sake of comparison. The 
resultas are summarized in Table 1 (this table also includes the estimated values for two other 
cost ratio values).  
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Table 1 Optimal Periodic Maintenance Policy by Cost Ratio (CIR CPM ), under MR ( τ̂MR ) and 
IR  assumption - ARA-1 model : τ̂ pol   (polinomial procedure) and τ̂GCM (GCM procedure).      
 
CIR CPM          τ̂MR     (h)     τ̂ pol  (h)  (ARA-1, polinomial)   τ̂GCM (h) (ARA-1, GCM) 
   1.23       14,345 

(13,271;15,474) a  
                   16,704 
         (13,822 ; 20,297) 

               15,709 
         (13,294;17,585) 

     3         9,430 
  (8,877;9,982) 

                    10,696 
            (8,859;13,033) 

                   8,520 
         ( 8,360,10,043) 

     10          5,352 
  (4,939;5,810) 

                       5,858 
               (4,860;7,128) 

                   5,274 
            (4,640,6,098) 

a:  95% C.I – non-parametric Bootstrap  
 
The main observations from Table 1 are: 

1. Using the cost ratio provided by the mining company (1.23) the optimal maintenance 
periodicity obtained under the ARA-1 model was τ̂ pol =16, 704  hours or 696 days  (using 

the polynomial procedure) and τ̂GCM =15, 709  hours or 654 days (using the GCM 
procedure).  Note that both values are larger than the one provided under the MR assumption 
(inappropriate for this practical situation).  

2. The values of the point estimates of the optimal periodic maintenance parameter τ  decrease 
with the increase of the cost ratio, no matter which assumption is made about the  repairs (i.e, 
MR or IR-ARA-1 ) .This result was  already expected since it is better to implement a PM 
before failures occur when the cost of a repair is too high. In particular,  the  three  point 
estimated values are pretty much the same for the highest cost ratio illustrated here (10).   

3. As far as the ARA-1 model,  the GCM procedure seems to provide smaller point estimates for  
the parameter τ ,  although the difference decreases with the increase of the cost ratio value.   

 
7. Concluding remarks and future work 
           In this paper, an optimal preventive maintenance (PM) check point was obtained for the 
case of repairable systems subject to perfect preventive maintenance actions (which returns them 
to an AGAN condition) and imperfect repairs (IR) after a failure. The IRs were assumed to be of 
degree θ  ( 0 ≤θ ≤1 , unknown), following an ARA-1 model. The motivating practical situation 
concerned failures histories of off-road truck engines used by a mining company. Model 
parameters estimates were jointly obtained by the Maximum Likelihood method, namely, the 
PLP parameters and the degree of repair θ .  
          Next, two procedures for estimating the mean function Λ(t)  in an ARA-1 model were 
presented. The methods combined Monte Carlo simulation, the calculation of the (nonparametric) 
Mean Cumulative Function  and aproximations  of the MCF  using a second order polinomial 
(polinomial procedure) and the GCM.  Those procedures  made it possible to estimate the optimal 
preventive maintencance check point (τ ) for the practical situation under study. Confidence 
intervals were also obtained for this quantitiy, using Bootstrap resamping method. The results 
were compared with the ones obtained under a minimal repair assumption. Recall that, by using 
the ARA-1 type model, the main challenge here was not only to come up with  good 
approximations  to the g-renewal function involved in the expression of the Mean Function 
(Λ(t) ) but one differentiable. With this in mind, one solution was to fit a polynomial curve to the 
MCF points  and the other,  to use the GCM.  Point estimates based on the two procedures were 
compared. Nevertheless,  it is important to find a  better way to compare those results.  Note that 
it is not possible to compare them via a Monte Carlo Simulation for example (using diferent 
values of the PLP and the repair efficiency parameter θ ) as it is usually done in statistical 
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studies, since we cannot calculate the “real value”  of Equation 3. (the g-renewal function). This 
difficulty was exactly what motivated this research in the first place.   
          What can be done is to use both methods in a situation where it is possible  calculate the 
real valuses, for instance the MR case. That is one of the follow ups of this research.  Another 
follow-up  is to verify via simulation, the real coverage of the intervals provided by each one of 
the procedures (polinomial and GCM) and the average lenth of those intervals.   
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