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ABSTRACT 

The space-time scan statistic is a widely-used method for cluster detection in 
which both the geographic locations and the temporal length of the cluster are unknown. It 
relies on a cylinder scanning window in which the base represents geographic locations and 
the height represents the time component, simultaneously. Due to the strict shape of the 
scanning window, different geometries and graphical representations have been proposed 
to generate irregular cluster shapes. However, creating irregular cluster shapes from graph 
structures is not trivial. In addition to increased computational cost, detected clusters are 
normally very large and oddly shaped. Alternatives, such as growing clusters based on most 
connected vertices have improved detection and delimited the cluster shape. Nevertheless, 
graph statistics such as in-degree, betweenness centrality, etc., can be explored as potential 
measures for growing clusters. Furthermore, if the graph structure represents flow of 
populations in space and time, then dynamic graph statistics can be applied to grow cluster 
candidates. 

KEYWORDS. graph analysis, scan statistics. 

Main area: TAG - Theory and Algorithms in Graphs  
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1. Introduction 

Spatial cluster techniques [Costa and Kulldorff, 2009] delineate boundaries around 
geographical areas in which the relative risk is higher as compared to the entire region 
under study. Therefore, these studies are useful for public health professionals to prioritize 
and optimize resources to act against disease outbreaks. The purely spatial scan statistic is 
a statistical cluster technique which assumes that the events follow either a Poisson or 
Bernoulli process. In addition, the spatial scan statistic usually assumes a fixed geometry for 
the cluster shape. By doing so, the cluster detection algorithm is improved. For example, the 
circular scan statistic requires the user to select only one parameter, which is the maximum 
window size. The algorithm modifies the center and the radius of the circle in order to scan 
the geographical region under study. For each different center and radius, a likelihood 
statistic is calculated. The circle with the highest statistical value represents the cluster 
candidate. 

 Similarly, the space-time scan statistic [Kulldorff et al., 1998] assumes a cylinder 
cluster shape in which base of the cylinder represents space, typically centered at the 
centroids with variable radii, and the height of the cylinder represents time. However, in 
order to detect irregular clusters, most successfully applied approaches rely on 
geographical graphs. For instance, computational heuristics for irregular cluster detection 
using a scan-based algorithm were proposed by Duczmal and Assunção (2004) using 
simulated annealing. Patil and Taillie (2004) introduced cluster detection using tessellation 
techniques, while Tango and Takahashi (2005) proposed an exhaustive search within pre-
sized circular clusters. Assunção et al. (2006) proposed a growth technique based on 
likelihood maximization in a graph structure, among others. 

 Nevertheless, most graph based cluster techniques assume that the underlying 
graph is not dynamic. That is, the graph is built using geographical adjacency information 
which does not change over time. Furthermore, graph based cluster techniques have a 
higher computational cost than standard methods. 

 This work aims at introducing graph based cluster models for dynamic graph 
structures. We are particularly interested in developing an irregular scan statistic that 
accounts for the flow of populations within the graph. One suggested approach is to 
calculate statistical measures for the vertices, such as vulnerability statistics, and then use 
these statistics as random variables for the likelihood scanning model. By doing so, we first 
incorporate the dynamic information into a static graph structure and then apply irregular 
cluster techniques. 

2. The graph based scan statistic 

 Graph based scan statistics usually generate cluster candidates using a graph 
structure built using geographical adjacency information, as show in Figure 1a. Different 
heuristics for building irregular cluster candidates are found in the literature. Most of these 
techniques aim at finding the cluster candidate that maximizes the likelihood ratio statistic. 
For example, if the Poisson process is assumed then the likelihood ratio test statistic is 
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where z  is the cluster candidate, C  is the total number of cases in the studied region, zc  is 

the number of cases in cluster z , and z  is the expected number of cases under the null 

hypothesis of no cluster in the studied region. Thus, the cluster candidate ẑ  is the solution 
of Equation 1. 
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(a) Cluster growing process using geographical 

adjacency information 
 

 
 

(b) A space-time graph structure built using 
geographical and temporal adjacency 

information. 
 

Figure 1. Purely spatial (a) and Space-time (b) graph structures built using adjacency 
information. 
 

One major advantage of a graph based scanning statistic relies on its ability to model both 
space and time information in one graph, as shown in Figure 1b. In this case, temporal 
adjacency information is used to connect the vertices in different temporal layers. As a 
result, the graph structure can be manipulated as if it were generated using purely 
geographical information. 

3. Graph statistics 

Let the vertices of the graph represent geographical locations and the edges be movements 
of individuals between the edges at time t . In this case, due to the temporal component of 
the movements, the graph structure changes over time. Furthermore, the edge between any 
two vertices has a direction. A proper summary of the graph is the adjacency matrix, A , 

which represents connections between vertices. Briefly, if 1ij[A]  then there is a 

connection between vertex i  and j . In symmetric graphs, jiij [A][A]  . Graphs that use 

only one adjacency matrix over a period of time are named static graphs. A common 
approach to deal with graphs with different adjacency matrices over time is to aggregate all 
movements over a fixed period of time, build a global static graph and then analyze its 
properties (Bigras-Poulin et al., 2006; Christley et al., 2005). An alternative approach is to 
repeat this process for a sequence of graphs, each one for a different period of time, and 
then check for common patterns among the resulting graphs (Robinson et al., 2007).  
 In practice, it is of interest to investigate properties of adjacency matrix A  mostly 
correlated to possible epidemics within the vertices. According to Vernon and Keeling 
(2009) a global static graph often fails to capture the dynamics of epidemics. However, 
statistics related to the graph topology are known to be correlated to the vulnerability of 
vertices to disease. For instance, Nöremark et al. (2011) evaluated several different 
statistical measures for risk analysis. The most predictive statistical measures are: (a) in-
degree of vertex j  which is a measure of the number of contacts from other vertices, or 

simply iji[A] . (b) The betweenness is a centrality measure of a vertex within a graph. The 

betweenness of vertex j  is the proportion of the shortest paths between all pairs of vertices 

that pass through vertex j . It is expected that a vertex with a high betweenness value would 

have a higher vulnerability to disease. (c) The total number of received individuals is a 
variation of the in-degree measure. It accounts for the total number of individuals entering 
vertex j  within the studied period of time. (d) The static neighborhood is the total number 
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of vertices connected to vertex j , directly or indirectly. This measure is calculated using 

the static adjacency matrix ttAA   for the entire temporal period of the analysis. (d) The 

ingoing infection chain counts all direct and indirect contacts to vertex j . The temporal 

sequence by which the edges occur is taken into account. This measure was proposed by 
Nöremark et al. (2011) and it was found to be the measure most correlated to risk in 
graphs. 
 

4. The Likelihood Model 

 Either the in-degree, or betweenness, or static neighborhood, or ingoing infection 
chain statistics represent a positive integer number, or a counted quantity. Thus, it may be 
reasonable to choose a Poisson likelihood model. Nevertheless, the distribution of the 
number of contacts within a graph might follow a Potential distribution, which is more 
asymmetric than the Poisson distribution. 

 In space and space-time scan statistics, the commonly applied statistical models are 
Poisson and Bernoulli. These distributions represent random variables of counts of infected 
individuals and, in addition, the underlying population can also be used. Recently, different 
distributions such as Exponential, Multinomial, Normal, among others, have been proposed. 
However, an adequate likelihood model applied to scan statistics on graph structures was 
not found in the literature. 

 

5. The application 

The movements of cattle in Brazil are currently recorded in electronic format through the 
issuance of animal movement permit (GTA). A single GTA stores information about the 
movements of animals between two farms, such as the farm where the movement starts 
(origin), the destination farm, the number of transported animals, the date of the issued of 
the GTA and the reason of transportation, among others. As previously stated, the GTAs can 
be seen as connections or edges in a directed graph structure in which the vertices are the 
farms. Using graph theory, measures of vulnerability, connectivity, and other statistical 
measures can be assigned to vertices or subgraphs of the graph. Specifically, it is of interest 
to identify vertices with greater vulnerability, that is, vertices that are more susceptible to 
highly infectious diseases or that accelerate the spread of infection. Nevertheless, a simple 
statistical analysis of the structure of the network might not adequately represent the true 
vulnerability of a vertex or a subgraphs because information such as the population at each 
vertex, the number of transported animals and the rate of infection of the disease should 
also be considered. 
 We analyzed records of animal movements occurring in the municipalities of Mato 
Grosso do Sul (Brazil) issued within the first 28 days of August 2009. During this period, 
2,052 GTAs were issued concerning cattle movements between 1,149 properties, and a 
total of 52,038 animals were moved among the farms. Figure 2a shows the static graph for 
the studied period. The circles represent farms (vertices). Vertices grouped closely together 
represent subnetworks. It is evident from Figure 2a that movements between farms is very 
sparse. Nevertheless, two major subgraphs can be identified. 
 By means of simulation studies, the ingoing infection chain statistic was found to be 
strongly associated to vulnerability of farms to diseases, as shown in figure 3. The higher 
the ingoing infection chain, the higher the vulnerability of a farm. Therefore, the ingoing 
infection chain statistic can be used as a preliminary statistic to investigate clusters of 
critical vertices. 
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(a) Graph of movements of cattle for the month 
of August 2009. Circles represent farms 
(vertices). Circles grouped closely together 
represent interconnected farms. 

 

 
(b) Subgraph with the most vulnerable vertex and the 
largest number of vertices. Numbers close to the 
vertices represent simulated vulnerability. Numbers on 
the edges indicate infection transmission rate among 
two vertices. 

 

Figure 2. Graph of movements of cattle for the month of August 2009 (a), and  subgraph 
with the most vulnerable vertex and the largest number of vertices (b). 
 

 
Figure 3. The ingoing infection chain statistics of the graph versus simulated vulnerability. 
 

6. Discussion and conclusion 

In this work we introduce the methodologies of space and space-time scan statistics using 
graph structures. This methodology allows the detection of irregular clusters in space and 
time. We propose to extend this method to the detection of cluster candidates in which the 
vertex information, aside from number of cases and populations, are graph statistics (i.e., 
the vertex vulnerability index). By doing so we aim at detecting cluster candidates in which 
the vulnerability of the vertices inside the cluster is higher than the vulnerability of the 
vertices outside the cluster. The final application is the analysis of dynamic graphs of animal 
movement in Brazil. 
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