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Abstract: In this work we show that for normal distributions theHotelling´s T and MEWMA 
distances are straight related to the Bhattacharyya distance. This distance provides interesting 
information concerning on the upper bound ofthe misclassification error probability, which is 
very difficult to compute precisely. Therefore, the purpose of this simulation study is to monitor 
the mean vector of Gaussian process by means of a more informative control chart based on 
probabilities. A comparison study shows that although this propose do not increase the power of 
change detection as measured by the average run length, this useful information being bounded 
in the 0-1 rangeindicates the overlap degree between the in- and out-of-control processes. The 
simulated results demonstrated that the confidence control chart MEWMA based is easy to 
calibrate and revealsa new approach in the monitoring of Gaussian mean vectors. 

Keywords: Gaussian point processes, mean vectors, statistical process control, noncentrality 
parameter, multivariate exponentially moving average, Bhattacharyya distance. 

1. Introduction 

 In many industrial problems theprobability of misclassification is a subject of great 
interest, but the calculation is a difficult task even when the observed datais normal. Therefore, 
the idea of monitoringa process by calculating its probability to be in- or out-of-control is usually 
discarded. Recent advanced statistical techniqueswith applications to the 𝐗� and the 𝐒2 control 
chartincludes the univariate case (Faraz and Saniga, 2012), and the multivariate case, where a 
recent work also covers the global process monitoring by controlling the mean vector and 
covariance matrix simultaneously (Niaki and Memar, 2009).  

Considering the process control of mean vectors only, the most utilized method to 
monitor big shifts is the Hotelling’s T control chart (Hotelling, 1947), while in the case of smaller 
shifts the multivariate exponentially weighted moving average (MEWMA) control chart (Lowry 
et al., 1992) is more popular for being simpler to implement when compared to its most famous 
concurrent, themultivariate cumulative sums (MCUSUM) control chart (Crosier, 1988). Although 
the methodology utilized in this work may be extend for the multivariate global process 
monitoring by means of probability measures, as an initial propose we only consider the process 
control of multivariate mean vectors.The main problem related to the monitoring of mean vectors 
can be addressed to the emptiness property of the hyperspaces (Jimenez and Landgrebe, 1998). In 
a general context, the impact of the limited sample data to estimate a large quantity of parameters 
is also known as the curse of dimensionality, which has been proved by Hughes (1968) in a 
strong theoretical basis. 

If a closed-form for the error probability is not provided,one may seek either an 
approximate expression or an upper bound on the error probability. A closed form for the upper 
bound on the error probability is very useful for many reasons. Beyond of reducing the 
computational effort greatly, the evaluation of a simple formula may provide an insightful 
knowledge about the actual process state. Furthermore, the misclassification error increases 
significantly with the number of dimensions, reducing dramatically the standardconfidence levels 
that the process is actually in-control(Fukunaga, 1990).Due to this fact, the evaluation of a 
probabilitymeasure instead of raw distances givesmore valuable information about the price we 
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have to pay for not knowing the alternative process statea priori.Focusing this objective, the 
monitoring of Gaussian mean vectors by means of a simple distance transformation that leads to 
a control chart directly based on probabilities is discussed in this work. 

In the following sections, the main properties of the noncentrality parameter traditionally 
used to monitor the mean vector by the Hotelling’s T and MEWMA control charts, as well the 
link with the upper bound on the error probability is described. Next, the experiments onthe 
Hotelling’s T and the probability control chart performance with individual observations are 
comparedby the computation of the average run lengths (ARLs), or average time to signal (ATS) 
as the interval between observations is regular. Finally, some remarks and recommendations on 
the confidence control chart are made. 

2. Methodology 

It is known that the performance measured by the average run length (ARL) of traditional 
control charts like the Hotelling’sT and MEWMA depends only on the noncentrality parameter, 
not dependingon the shift’s direction (Lowry et al., 1992). This distance is given by 

d𝑡2 = (𝐗𝑡 −𝐌0)T𝚺0−1(𝐗𝑡 −𝐌0),    (1) 

where 𝐗𝑡, 𝐌0 and 𝚺0 are the observed vector, the in-control mean vector and the in-control 
covariance matrix, respectively. The decision rule gives an out-of-control signal as soon as 
d𝑡2 > ℎ1, where ℎ1 is a specified threshold that leads to a pre-specified false alarm rate, usually 
defined in terms of the ARL. 

 In his original paper in 1947, Hotelling suggested the utilization of d2 instead of d to 
avoid the labor of extracting the square root, butas the computational power has massively 
increased in the last decades it is almost no matter anymore. Thus, to maintain clear the effect on 
the in-control limits,in this work d is used for experiment comparisons varying in the 0-4 range.  

While the Hotelling’s T considers the global process monitoring by outlying observations 
that are outside the in-control boundaries, the MEWMA statistic considers the entire process to 
be out-of-control as soon as 

𝑧𝑡2 = (𝐌𝑡 −𝐌0)T𝚺−1(𝐌𝑡 −𝐌0) > ℎ2,   (2) 

where𝐌𝑡 is the mean vector estimated with past and current information by a MEWMA scheme, 
such that 

𝐌𝑡 = (1 − 𝜆)𝐌𝑡−1 + 𝜆𝐗𝑡.     (3) 

and 0 < 𝜆 ≤ 1. Observe that when 𝜆 = 1, the MEWMA distance reduces to the Hotelling’s 
distance. 

The noncentrality parameteris very popular in the pattern recognition field (Therrien, 
1989), also known as Mahalanobis distance, and with a straight connection with the 
Bhattacharyya distance, which is derived from the most general case, the Chernoffbounds 
(Fukunaga, 1990). That boundaries leads to a closed-form expression to computean upper limit 
on the Bayes error forthe case of normal distributed processes such as 

ε = �P1 ∗ P2 ∫�p1(X) ∗ p2(X) dX = �P1 ∗ P2e−µ(1/2),    (4) 

where 

µ(1/2) = 1
8

(𝐌2 −𝐌1)T �𝚺1+𝚺2
2

�
−1

(𝐌2 −𝐌1) + 1
2

ln
�𝚺1+𝚺22 �

�|𝚺1||𝚺2|
.  (5) 

The term µ(1/2) is called theBhattacharyya distance and is used as an important 
separabilitymeasure between two normal distributions, where𝐌𝑖and 𝚺𝑖, 𝑖 = 1,2, are the mean 
vector and covariance matrix of each class. This distance is composed of two terms, the first one 
carrying the information about the process difference in the mean vectors, and the second part 
corresponding to the difference in the covariance matrices. 
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Rao (1947) explained that this distance is an explicit function of the proportion of 
overlapping individuals in the two populations. Rao (1949) also commented that Bhattacharyya 
had developed a perfectly general measure defined by the distance between two populations 
based on a metric of Riemannian geometry, with the angular distance between points 
representing the populations in a unit sphere. 

In the case of single-hypothesis tests, like in statistical process control (SPC) 
problems,the out-of-control state isgenerally undetermined. Then, instead of utilizing equation 
(4) which supposes two known processes, it is more interesting to evaluate only the upper bound 
for the Type I error, which refers only to the known process and isgiven by 

εI = �P2/P1 ∫�p1(X) ∗ p2(X) dX = �P2/P1e−µ(1/2).   (6) 

Also, as this work is focused in the monitoring of mean vectors only, the assumption of 
equal covariance matrices reduces the Bhattacharyya distance to the noncentrality parameter, 
exceptby a constant,assuming the form 

µ(1/2) = 1
8

(𝐌𝑡 −𝐌0)T𝚺0−1(𝐌𝑡 −𝐌0).   (7) 

where𝐌𝑡 is the mean vector estimated at the instant t, 𝐌0 is the in-control mean vector and 𝚺0is 
the in-control covariance matrix. 

This simplified form preserves all the known properties of the Hotelling’s T and 
MEWMA control chart with respect to the performance measured by the average run length. To 
examine the mainproperties of this distance, let us consider the distribution of d2with expected 
vector 𝐌 and the covariance matrix 𝚺. Then, the standardized distance from individual 
observations to the process center is 

d2 = (𝐗 −𝐌)T𝚺−1(𝐗 −𝐌) = 𝐙T𝐙 = ∑ z𝑖2𝑛
𝑖=1 ,   (8) 

where𝐙 = 𝐀T(𝐗 −𝐌) and 𝐀 is the whitening transformation. Since the expected vector and 
covariance matrix of 𝐙 are 0 and 𝑰 respectively, the zi’s are uncorrelated, and E(zi) = 0 and 
Var(zi) = 1. Thus, the expected value and variance of d2for the in-control process (IC) are 

E(d2|IC) = 𝑛 E�zi2� = 𝑛    (9) 

Var(d2|IC) = E((d2)2)− E2(d2) 

Var(d2|IC) = ∑ E�zi4�+n
i=1 ∑ ∑ E�zi2zi2� − 𝑛2n

j=1i≠j E2�zi2�n
i=1 .   (10) 

When the z𝑖2’s are uncorrelated (this is satisfied when the zi’s are independent), and E�z𝑖4� is 
independent of i, the variance of d2can be further simplified to 

Var(d2|IC) = 𝑛γ.     (11) 

γ = E�zi4� − E2�zi2� = E�zi4� − 1.   (12) 

For normal distributions, when the zi’s are uncorrelated, they are also independent, 
therefore, (10) can be used to compute Var(d2|IC), and 𝛾 = 2. Note that in (9) and (10), only the 
first and second order moments of d2 are given. However, if the zi’s are normal, the density 
function of d2 is the gamma density with 𝛽 = 𝑛/2 − 1 and 𝛼 = 1/2.Since the zi’s are obtained 
by a linear transformation of X, the zi’s are normal if X is normal. Note that the gamma 
distribution becomes an exponential distribution for𝑛 = 2. Indeed,the distribution of d2 with the 
mean 𝑛 and standart deviation √𝑛𝛾 approximates the normal when n large.  
 Considering the out-of-control state (OC) with mean vector 𝐌1, the expected value of d2 
under assumption of equal covariance matrices I-I is given as 

E(d2|OC) = 𝑛 +𝐌1
𝐓𝐌1,    (11) 

and variance as 
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Var(d2|OC) = 2𝑛 + 4𝐌1
T𝐌1.    (12) 

These results may be extended to the case where the sample mean and sample covariance 
matrix are used in place of known parameters, as 

ζ = 1
𝑁−1

�𝐗 −𝐌��T𝚺�−1�𝐗 −𝐌��.    (13) 

When X is normal, ζ has the beta distribution with E(ζ|IC) = 𝑛/(𝑁 − 1)and Var(ζ|IC) =
2𝑛/(𝑁 − 1)2. 

The simulated experiments presented in the following section agree with the presented 
theoretical values for the first and second moments of the Bhattacharyya distance as well for the 
Hotelling’s T with high precision. 

2.1. Confidencecontrol charts 

The theoretical resultsearlypresented provide a different look in the process monitoring 
by transforming the statistical raw distances and theirs respective in-control boundaries into 
probability values as standard patterns. First, if there is no special reason to weight the in- and 
out-of-control process differently, the processes are equally weighted in equation (6), thus 
reducing the upper bound on the Type I error to exp (−µ(1/2)). Different weights for the 
processes will result in a scale modification, but still preserving the 0-1 domain. 

Observe that when the process is actually in-control, the estimatedmean vector, or 
individual observations, must show no significant difference from the in-control standard error 
levels. This leads to an upper bound ofεI that is near to one because the in-control and current 
processesare completely overlapped. When the mean vector shiftsto the out-of-control state, the 
upper bound onεI decreases indicating less overlappingamong the processes. By other hand, if the 
complementary probability is taken, it indicates an upper bound on the confidencelevel which is 
closer to zero, meaning that the current process is not being apart from the in-control state. 

Based on those appointments, the probability control chart when individual observations 
are compared to the in-control mean vector is taken as the standard level for the different waysof 
estimating the mean vector. This approach can be viewed as the MEWMA chart with𝜆 = 1, 
which is a simple scale transformation of the Hotelling’s T by the use of Bhattacharyya distance, 
triggering a signal as soon as 

𝑝𝑡 = 1 − exp �− 1
8

(𝐗𝑡 −𝐌0)T𝚺0−1(𝐗𝑡 −𝐌0)� > ℎ1∗,  (14) 
whereℎ1∗ is the in-control upper limit to achieve a desired ARL0. 

By reducing the 𝜆value, the individual observed vector is changed by a mean vector, 
performing like a transformedMEWMA control chart, where Equation (3) is utilized to estimate 
the current mean vector, 𝐌𝑡. In this case, the confidence control chart triggers an out-of-control 
signal as soon as 

𝑝𝑡 = 1 − exp � −1
8

(𝐌𝑡 −𝐌0)T𝚺0−1(𝐌𝑡 −𝐌0)� > ℎ∗.  (15) 
whereℎ∗ is chosen to achieve a desired ARL0.  

The control chart calibration procedure was carried out in two steps to achieve an ARL0 
= 200 for all control charts. The first step adjusts a linear regression models in the form d2 = 𝑎 +
𝑏 ∗ ln (𝐴𝑅𝐿). This procedure gives an approximate first estimative of in-control thresholds for 
each chart. The second step in the calibration procedure iteratively adjusts the threshold by 
interpolation.Next section illustrates the functionality of the proposed control chart and analyses 
the comparative experiments. 

 

3. Results and discussion 

The first part of the experimentscompares the Hotelling’s T and the confidencecontrol 
chart for individual observation vectors(𝜆 = 1), which performs a scale transformation of the 
Hotelling’sdistance. Figure 1 (a) shows the signal pattern for the case of no change in the mean 
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vector, d = 0, while Figure 1 (b) and (c) shifts the mean vector process at time t = 201 to the 
distances d = 3 and 6, respectively.In the scatter-plot below the control chart, the out-of-control 
observation vectors are markedwithred dots in the scatter-plot,while the in-control dots are black. 
The vertical line in the middle of the chart delimits the change point.The horizontal dashed 
linesare the in-control thresholds for the pre-defined ARL0 = 200. Given in probability value, the 
in-control upper limit for the confidence chart is ℎ∗ = 0.7362 (73,62%). The correspondent in-
control noncentral distance that holds for an ARL0 = 200 in the Hotelling’s T control chart is h = 
3.265, which is just a scale transformation of ℎ∗. 

 
Figure 1:Confidence MEWMA control chart for individual vectors(λ = 1)with scatter plots 

Observing Figure 1 (c), notice that most of the out-of-control observation vectors do not 
overlaps the in-control region, resulting in probability values closer to 1. This indicates that the 
confidence level converge to 1 when the processes are not overlapped. This characteristic pattern 
does not happen with the Hotelling’s T statistic because it has no bound for maximum values, 
making the interpretation of out-of-control signals difficult to evaluate.  

A more detailed summary of the raw distances and theirs equivalent confidence levels are 
given in Table 1, where d2��� and 𝑝̅ are average values and Sd(*) is the standard deviation from 
100.000 sample replications of size 10. Note that the simulated experiments confirm with high 
precision the expected parameters of the Hotelling’s T statistic (d2). Also as expected, the ARL 
for both charts are exactly equal, demonstrating that the transformation of the Hotelling’s T by 
the Bhattacharyya distance and into probabilities does not modify the control chart performance 
with respect to the ARL. 

Figure 2 is composed of three sets of confidence control charts and theirs respective two-
dimensional scatter plots below the control chart. The first 200 observations are generated from 
the in-control process with d = 0, while the second group of 200 observations are generated from 
the out-of-control process with d = 3. The confidence MEWMA control chart utilisingλ = 1 
performs exactly as the transformed Hotelling’s T2 and can be viewed in Figure 2 (a). This 
control chart serves as a standard confidence level to protect the global in-control process region.  

As well known in the MEWMA procedure, the reduction on the λ parameter turns the 
control chart more sensitive to small shifts in the mean vector. Figure 2 (b) shows how the 
proposed control chart performs when utilising λ = 0.7. This reduced value for λ acts by reducing 
the standard confidence level for the in-control process. In this case, the in-control confidence 
upper limit to achieve an ARL0 = 200 is ℎ∗ = 0.5086 (50.86%). When the smoothing factor λ is 
reduced for 0.4 as shown in Figure 2 (c), the standard confidence level for the in-control process 
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is reduced to a lower baseline than the previous values, with ℎ∗ = 0.2747 (27.47%), indicating 
that the control chart will be more rigorous concerning to the variation of the current mean 
vector. 

Table 1: Summary of the Hotelling’sT2 and Confidence CCwith ARL comparison 
d d2��� Sd(d2) ARL 𝑝̅(%) Sd(𝑝)(%) ARL 

0.0 2.000 1.850 200.6 20.00 15.74 200.6 

 0.006 0.006 0.634 0.001 0.000 0.634 
0.5 2.251 2.070 118.8 21.97 16.93 117.7 

 0.007 0.007 0.376 0.001 0.001 0.372 
1.0 3.001 2.642 43.1 27.62 19.57 43.1 

 0.009 0.008 0.136 0.001 0.001 0.136 
1.5 4.252 3.407 16.0 36.13 21.96 16.0 

 0.013 0.011 0.051 0.001 0.001 0.051 
2.0 6.003 4.263 7.0 46.39 22.98 7.0 

 0.019 0.013 0.022 0.001 0.001 0.022 
2.5 8.253 5.163 3.6 57.19 22.30 3.6 

 0.026 0.016 0.011 0.002 0.001 0.011 
3.0 11.004 6.086 2.2 67.49 20.13 2.2 

 0.035 0.019 0.007 0.002 0.001 0.007 
3.5 14.270 7.039 1.5 76.51 16.97 1.5 

 0.143 0.070 0.005 0.002 0.001 0.005 
4.0 18.021 7.987 1.2 83.86 13.39 1.2 

 0.180 0.080 0.004 0.003 0.000 0.004 
h(ARL0=200) 10.66   73.62   

 

 
Figure 2:Confidence MEWMA control chart for individual vectors (a) and mean vectors(b, 

c)with scatter plots 

A detailed comparison between the confidence control charts baselines (mean values) 
and standard deviations for the in-control process with λ varying from 1 to 0.1 by 0.1 units is 
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given in Table 2. Figure 3 (a) and (b) shows how the mean confidence value and its respective 
standard deviation estimated in Table 2 behave by reducing the smooth factor. 

To analyse the out-of-control behaviour of the proposed statistic, the mean vector shifts 
with d varying in the 0-4 range by 0.5 units. This information is also valid to inspect in order to 
have a support for the decision maker.  The results are presented in Table 3 and Figure 4, from 
which is easy to notice the interesting patterns of the out-of-control process for the proposed 
statistic. 

 
Table 2:Summary of the Confidence MEWMACC statistics for the in-control process 

λ 𝑝̅(%) Sd(𝑝)(%) 
1.0 0.20013 0.15740 

 
0.00090 0.00070 

0.9 0.16995 0.13706 

 
0.00076 0.00061 

0.8 0.14299 0.11748 

 
0.00064 0.00053 

0.7 0.11870 0.09872 

 
0.00053 0.00044 

0.6 0.09664 0.08078 

 
0.00043 0.00036 

0.5 0.07644 0.06367 

 
0.00034 0.00028 

0.4 0.05778 0.04740 

 
0.00026 0.00021 

0.3 0.04039 0.03211 

 
0.00018 0.00014 

0.2 0.02407 0.01811 

 
0.00011 0.00008 

0.1 0.00908 0.00634 

 
0.00004 0.00003 

 
 

 
Figure 3:Mean value and standard deviation of the Confidence MEWMA CC for the in-

control process with various λ’s 
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 As observed previously, the proposed control chart does not bring improvements with 
respect to the control chart performance as measured by the ARL. A simulated comparison with 
the selected values for the smooth factor λ is presented in Table 4 and Figure 5. These results 
show the same known pattern of the Hotelling’s T and the traditional MEWMA control charts, 
where the ARL is reduced with a reduction in the smoothing factor. Table 4 presents the average 
run lengths and standard errors of the estimate, while in Figure 5 is presented the ARL in a 
natural logarithm scale to emphasize the performance differences. The main result of Figure 5 is 
to notice that when λ = 0.4, the control chart starts to suffer the inertial effect to change detection 
as from d = 3.5. 

Table 3:Summary of the Confidence MEWMACC statistics for out-of-control processes 
and λ = 1.0, 0.7,  0.4 and 0.1 

λ 1   0.7   0.4   0.1   
d 𝑝̅(%) Sd(𝑝)(%) 𝑝̅(%) Sd(𝑝)(%) 𝑝̅(%) Sd(𝑝)(%) 𝑝̅(%) Sd(𝑝)(%) 

0.0 19.99 16.03 11.86 10.17 5.83 5.09 1.08 0.83 

 
0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 

0.5 21.97 17.22 14.16 11.69 8.23 6.62 2.35 1.61 

 
0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 

1.0 27.61 19.83 20.72 14.82 15.04 9.67 6.03 3.77 

 
0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 

1.5 36.12 22.19 30.53 17.50 25.22 12.53 11.75 7.00 

 
0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 

2.0 46.37 23.21 42.24 18.76 37.33 14.62 18.97 10.92 

 
0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.000 

2.5 57.17 22.57 54.40 18.42 49.87 15.83 27.08 15.05 

 
0.003 0.001 0.002 0.001 0.002 0.001 0.001 0.001 

3.0 67.47 20.46 65.79 16.78 61.58 16.26 35.49 18.98 

 
0.003 0.001 0.003 0.001 0.003 0.001 0.002 0.001 

3.5 76.49 17.36 75.59 14.33 71.64 16.07 43.67 22.39 

 
0.003 0.001 0.003 0.001 0.003 0.001 0.002 0.001 

4.0 83.84 13.82 83.40 11.56 79.69 15.43 51.25 25.11 

 
0.004 0.001 0.004 0.001 0.004 0.001 0.002 0.001 

4.5 89.43 10.35 89.22 8.89 85.74 14.49 58.00 27.06 

 
0.004 0.000 0.004 0.000 0.004 0.001 0.003 0.001 

5.0 93.43 7.30 93.29 6.58 90.06 13.36 63.82 28.31 

 
0.004 0.000 0.004 0.000 0.004 0.001 0.003 0.001 

5.5 96.11 4.86 95.98 4.71 93.03 12.14 68.73 28.94 

 
0.004 0.000 0.004 0.000 0.004 0.001 0.003 0.001 

6.0 97.81 3.05 97.67 3.28 95.01 10.88 72.79 29.10 

 
0.004 0.000 0.004 0.000 0.004 0.000 0.003 0.001 

6.5 98.83 1.81 98.68 2.24 96.33 9.63 76.13 28.91 

 
0.004 0.000 0.004 0.000 0.004 0.000 0.003 0.001 

7.0 99.40 1.02 99.27 1.50 97.21 8.45 78.86 28.47 

 
0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.001 

Conclusion 
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 In this work we propose a new manner of monitoring Gaussian mean vectors by the use 
of an upper bound on the confidence that the process is in-control. Instead the monitoring of the 
traditional noncentrality parameter, we suggest the use of the Bhattacharyya distance due to its 
relationship with the upper bound on the misclassification error. While the Hotelling’s traditional 
distance has no maximum values, the proposed confidence control chart based on probabilities 
for individual observation vectors manifest a useful distinction between processes in the 0-1 
range. In this case, when the out-of-control process became completely separable (not 
overlapped) from the in-control process, the proposed statistic converge to 1, not going to 
infinity.  
 

 

 

(a)  (b)  
Figure 4:Mean value (a) and standard deviation (b) of the Confidence MEWMA CC for the 

out-of-control process with various d’s 

 
 
 

 

Figure 5:Confidence MEWMA CC performance comparison for the out-of-control process 
with various d’s 

Additionally, we show that the probability control chart for individual observation 
vectors is a particular case that can be extended to a more general optics, the mean vector process 
monitoring by the use of a MEWMA based control chart. Despite the fact that the performance 
measured by the ARL is the same of the traditional approach, the interesting particularity of the 
proposed statistic is its limited behaviour in the 0-1 range. 

Future work on this topic includes the monitoring of the covariance matrix of a Gaussian 
process by the use of probability based control charts, as well the global process monitoring, i.e., 
the jointly monitoring of the mean vector and covariance matrix of a multivariate Gaussian 
process. 

Table 4:Average run length comparison for λ = 1.0, 0.7 and 0.4 
d \ λ 1.0 0.7 0.4 

 -

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

M
ea

n

d

 1.0

0.7

0.4

0.1
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0.0 200.6 198.9 199.3 

 
0.634 4.45 4.46 

0.5 117.7 83.2 52.6 

 
0.372 0.83 0.53 

1.0 43.1 22.7 12.8 

 
0.136 0.23 0.13 

1.5 16.0 8.4 5.6 

 
0.051 0.08 0.06 

2.0 7.0 4.1 3.4 

 
0.022 0.04 0.03 

2.5 3.6 2.6 2.5 

 
0.011 0.03 0.03 

3.0 2.2 1.9 2.0 

 
0.007 0.02 0.02 

3.5 1.5 1.5 1.7 

 
0.005 0.01 0.02 

4.0 1.2 1.3 1.5 

 
0.004 0.01 0.01 
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