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ABSTRACT

In this paper, we study tactical models for a crude oil transportation problem. The
problem considers inventory capacities and discrete lot sizes to be transported by tankers, aiming
to supply given demands over a finite time horizon. We show a new formulation that achieves a
better performance than the literature. The results are compared over 3 classes of instances. A
column generation based heuristic is proposed to find good feasible solutions for the hardest class
of instances with less computational burden than the heuristics of the commercial solver used.
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1 Introduction

In this paper, we study a tactical optimization model for crude oil distribution by tankers.
The problem consists of scheduling the shipments through routes linking platforms (offshore
production sites) and terminals (onshore consumer sites). The routes are assumed to be round
trips, where a tanker departs loaded from a platform, offloads at a terminal and travels back to
the platform of origin unloaded. The objective is to ship a single product from the platforms to
supply the terminals with minimum transportation cost for a finite planning horizon. For each
site, the inventory levels must lie between a lower and an upper bound to avoid the lack or excess of
product. Also, for each site, the demand or the production amounts are given for the whole planning
horizon. The product is shipped only by oil tankers and we assume that the global capacity of the
fleet is unlimited. We also consider that when an oil tanker leaves a platform, it is loaded with his
full capacity, and there are economies of scale, i. e., larger tankers have smaller unitary costs. For
each transportation, one has to decide the route, the lot size and the delivery day.

The problem as it is defined here has already been addressed in Rocha et al. (2011) and
Aizemberg et al. (2012). Rocha et al. (2011) present some formulations for the problem, and the
formulation with the best performance is referred to as Knapsack Cascading. Aizemberg et al.
(2012) also study some formulations for the problem, and the best formulation proposed, which
outperforms the results of previous works, is the Knapsack Cascading formulation tightened by
rounding of right hand sides, and with new variables representing accumulated shipping in routes.
In the present work, a new formulation that outperforms those found in literature for almost all
instances is devised. The instances used as benchmark are those proposed by Rocha et al. (2011)
(medium and hard instances) and Aizemberg et al. (2012) (harder instances).

A column generation based heuristic approach is presented and tested only over the harder
class of instances. We note that, for this class of instances, the commercial solver used was not
capable of finding good feasible solutions at the beginning of the branch-and-bound algorithm tree.
Finding a good feasible solution at the very beginning of the tree is crucial to reduce the search by
cutting off nodes of such tree, increasing the probability of proving the optimality in a reasonable
computational time.

1.1 Literature review

Several models are found in literature to deal with problems involving the transportation
of oil derivatives, but considering a wide range of different characteristics. To optimize such models,
Mixed Integer Programming (MIP) techniques are the most used. In Velez and Maravelias (2013),
the authors deal with the scheduling of chemical production which typically has many symmetric
solutions. Three MIP formulations are proposed and additional constraints are created to define
the number of batches of each task as an integer variable. Branching on this new integer variable
leads to the elimination of many symmetric solutions. In Magatão et al. (2004) and Boschetto
et al. (2010), MIP approaches are applied to schedule the activities in a real pipeline network. The
former uses illustrative instances with four products, while the latter uses large instances, where
more than 14 oil derivatives and ethanol are transported. Finally, Banaszewski et al. (2010) and
Aizemberg et al. (2011) deal with the medium-term planning of oil derivatives transportation in
the multimodal supply chain network of a Brazilian oil/energy company. The former applied an
auction based multiagent algorithm, while the latter applied a MIP based local search approach
over a mathematical formulation.

Column generation-based heuristics (CGH) are found in literature to deal with many
different problems: multi-item scheduling (Bahl, 1983), vehicle routing (Mourgaya and Vander-
beck, 2007), cutting stock (Furini et al., 2012), sensor placement (Yavuz et al., 2010), generalized
assignment (Moccia et al., 2009) and many others. In general, such approaches share similar main
characteristics: first, the linear programming relaxation is solved by column generation. Then, a
feasible solution is constructed for the original problem using the obtained columns. For example,

1667



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

in Choi and Tcha (2007) the authors apply a column generation heuristic for the heterogeneous fleet
vehicle routing problem which consists on three steps: (i) solve the continuous relaxation; (ii) set
the variables of the final restricted master as binaries; and (iii) solve the resulting MIP problem. In
Joncour et al. (2010), the authors review generic classes of column generation-based heuristics.

1.2 Paper organization

The remainder of the paper is organized as follows. Section 2 presents the problem
definitions and the mathematical formulations. Section 3 shows the column generation based
heuristic. Section 4 discusses the obtained results. At last, Section 5 contains the conclusions
of this work.

2 Mathematical formulations

The optimization problem defined in Rocha et al. (2011) is defined as follows. We are
given a set P of platforms, a set T of terminals, a set C of classes of oil tankers and the length
D of the planning horizon in days. Let T (p) ⊆ T be the subset of terminals that are allowed to
receive a tanker from a platform p ∈ P , and let P (t) ⊆ P be the subset of platforms allowed to
send a tanker to a terminal t ∈ T . A single product should be shipped from platforms to supply the
demands of the terminals. The inventory levels of platforms and terminals are bounded by lower
and upper bounds, i.e., the lack or surplus of the product are not allowed at any point of the network
during the whole planning horizon. The production amount Pp,d of a platform p ∈ P at day d,
the maximum inventory capacity CAPp and initial inventory ep,0 are given, as well as the demand
Ct,d of a terminal t ∈ T at day d, the maximum inventory capacity CAPt and initial inventory
et,0. Minimum inventory capacities are assumed to be zero. A class c ∈ C contains oil tankers
with same shipping capacity Vc and transportation cost per day Fc, and it is assumed that only oil
tankers with fulfilled capacities are used in the transportation. The transportation time between a
platform p ∈ P and a terminal t ∈ T (p) is given by Dp,t. The objective is to minimize the total
transportation costs.

Some additional definitions are listed on the following. Let Lp be the greatest common
divisor (GCD) of all shipping capacities of all classes of tankers that are allowed to depart from
a platform p ∈ P , and let Lt be the GCD of all shipping capacities of all classes of tankers that
are allowed to supply terminal t ∈ T . In addition, let ACp,d be the accumulated production of a
platform p ∈ P from day 1 to a day d plus its initial inventory ep,0, and let ACt,d be the accumulated
demand of terminal t ∈ T from day 1 to a day d, minus its initial inventory et,0.

2.1 Rounded Knapsack Cascading formulation

The Rounded Knapsack Cascading (RKC) formulation is a stronger version of the KC
formulation of Rocha et al. (2011), tightened by rounding the right hand sides of the constraints.
Let the binary variables zc,dp,t indicate if an oil tanker of class c ∈ C(p) is sent from a platform p ∈ P

to a terminal t ∈ T (p) at day d, d ∈ {1, ..., D}. We assume that zc,dp,t = 0 whenever d < 1. Thus,
theRKC formulation is given by:

(RKC) min
∑
p∈P

∑
t∈T (p)

∑
c∈C(p)

D∑
d=1

2FcDp,tz
c,d
p,t (1)

subject to

∑
t∈T (p)

d∑
τ=1

∑
c∈C(p)

Vcz
c,τ
p,t ≤

⌊
ACp,d

Lp

⌋
Lp ∀p ∈ P, d ∈ {1, ..., D} (2)
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∑
t∈T (p)

d∑
τ=1

∑
c∈C(p)

Vcz
c,τ
p,t ≥

⌈
ACp,d − CAPp

Lp

⌉
Lp ∀p ∈ P, d ∈ {1, ..., D} (3)

∑
p∈P (t)

d∑
τ=1

∑
c∈C(p)

Vcz
c,τ−Dp,t

p,t ≥
⌈
ACt,d

Lt

⌉
Lt ∀t ∈ T, d ∈ {1, ..., D} (4)

∑
p∈P (t)

d∑
τ=1

∑
c∈C(p)

Vcz
c,τ−Dp,t

p,t ≤
⌊
CAPt +ACt,d

Lt

⌋
Lt ∀t ∈ T, d ∈ {1, ..., D} (5)

zc,dp,t ∈ {0, 1} ∀p ∈ P, t ∈ T (p), c ∈ C(p), d ∈ {1, ..., D}. (6)

The objective function (1) minimizes the total transportation cost, including the trip back
from the terminal to the platform after each transportation. Constraints (2) avoid the inventory
levels at each platform and each day to be less than the minimum capacity. Constraints (3) ensure
that the inventory levels at each platform never exceed their maximum inventory capacity at each
day. Constraints (4) avoid the inventory levels at each terminal and each day to be less than the
minimum capacity and constraints (5) ensure that the inventory levels at each terminal never exceed
their maximum inventory capacity at each day. Finally, the z variables are defined by (6) as binaries.

2.2 Rounded Cascading Accumulated in Routes formulation

This formulation is adapted from Aizemberg et al. (2012). It differs from the RKC
formulation by the addition of integer variables xc,dp,t representing the number of tankers of class
c ∈ C(p) leaving a platform p ∈ P to a terminal t ∈ T (p) from day 1 to day d, and assume that
xc,0p,t = 0. The Rounded Cascading Accumulated in routes (RCAR) formulation is given by:

(RCAR) min
∑
p∈P

∑
t∈T (p)

∑
c∈C(p)

2FcDp,tx
c,D
p,t (7)

subject to

xc,dp,t = xc,d−1
p,t + zc,dp,t ∀p ∈ P, t ∈ T (p), c ∈ C(p), d ∈ {1, ..., D} (8)

∑
t∈T (p)

∑
c∈C(p)

Vcx
c,d
p,t ≤

⌊
ACp,d

Lp

⌋
Lp ∀p ∈ P, d ∈ {1, ..., D} (9)

∑
t∈T (p)

∑
c∈C(p)

Vcx
c,d
p,t ≥

⌈
ACp,d − CAPp

Lp

⌉
Lp ∀p ∈ P, d ∈ {1, ..., D} (10)

∑
p∈P (t)

∑
c∈C(p)

Vcx
c,d−Dp,t

p,t ≥
⌈
ACt,d

Lt

⌉
Lt ∀t ∈ T, d ∈ {1, ..., D} (11)

∑
p∈P (t)

∑
c∈C(p)

Vcx
c,d−Dp,t

p,t ≤
⌊
CAPt +ACt,d

Lt

⌋
Lt ∀t ∈ T, d ∈ {1, ..., D} (12)

xc,dp,t ∈ Z+, z
c,d
p,t ∈ [0, 1] ∀p ∈ P, t ∈ T (p), c ∈ C(p), d ∈ {1, ..., D} (13)

The objective function (7) is to minimize the total transportation cost. Constraints (8)
define the x variables in terms of the z variables. Constraints (9) and (10) ensure that the inventory
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level in each platform p at day d is not less than the minimum inventory capacity and does not
exceed the maximum inventory capacity. Constraints (11) and (12) avoid the inventory level in
each terminal t at day d to be less than the minimum capacity and to exceed the maximum inventory
capacity. At last, constraints (13) define the x variables as non negative integers and the z variables
as continuous variables in the range between zero and one. Note that constraint (8) ensures the
integrality of the z variables when all x values are integer.

In this formulation, as pointed out by Aizemberg et al. (2012), by the addition of the x
variables, the number of non-zero coefficients of the constraints matrix is much smaller than in
RKC because each x variable replaces a sum of many z variables. Moreover, the x variables are
more suitable for branching.

2.3 Rounded Cascading Accumulated in Sites formulation

This new formulation also differs from RKC formulation by the addition of new integer
variables. These new variables are defined as follows: let xc,dp be an integer variable representing
the number of tankers of class c ∈ C(p) leaving platform p ∈ P from day 1 to day d, and let xc,dt

be an integer variable representing the number of tankers of class c ∈ C(t) arriving at terminal
t ∈ T from day 1 to day d. Assume that xc,0p = xc,0t = 0. Given this, the Rounded Cascading
Accumulated in Sites (RCAS) formulation is given by:

(RCAS) min
∑
p∈P

∑
t∈T (p)

∑
c∈C(p)

D∑
d=1

2FcDp,tz
c,d
p,t (14)

subject to

xc,dp = xc,d−1
p +

∑
t∈T (p)

zc,dp,t ∀p ∈ P, c ∈ C(p), d ∈ {1, ..., D} (15)

xc,dt = xc,d−1
t +

∑
p∈P (t)

z
c,d−Dp,t

p,t ∀t ∈ T, c ∈ C(t), d ∈ {1, ..., D} (16)

∑
c∈C(p)

Vcx
c,d
p ≤

⌊
ACp,d

Lp

⌋
Lp ∀p ∈ P, d ∈ {1, ..., D} (17)

∑
c∈C(p)

Vcx
c,d
p ≥

⌈
ACp,d − CAPp

Lp

⌉
Lp ∀p ∈ P, d ∈ {1, ..., D} (18)

∑
c∈C(t)

Vcx
c,d−Dp,t

t ≥
⌈
ACt,d

Lt

⌉
Lt ∀t ∈ T, d ∈ {1, ..., D} (19)

∑
c∈C(t)

Vcx
c,d−Dp,t

t ≤
⌊
CAPt +ACt,d

Lt

⌋
Lt ∀t ∈ T, d ∈ {1, ..., D} (20)

xc,dp ∈ Z+ ∀p ∈ P, c ∈ C(p), d ∈ {1, ..., D} (21)

xc,dt ∈ Z+ ∀t ∈ T, c ∈ C(t), d ∈ {1, ..., D} (22)

zc,dp,t ∈ [0, 1] ∀p ∈ P, t ∈ T (p), c ∈ C(p), d ∈ {1, ..., D}. (23)

Note that, if all x variables are fixed, constraints (15) and (16) define an instance of the
classical transportation problem (the remaining constraints contain only x variables). Thus, the
integrality of z variables is ensured for any solution where all x variables are integer.
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3 Column Generation-based Heuristic

This section presents the proposed heuristic based on Column Generation (CG). First we
describe the Dantzig-Wolfe decomposition and the pricing subproblem proposed by Aizemberg
et al. (2012). Next, we show a dynamic programming recursion to solve the pricing subproblem.
Lastly, a pseudocode describes the heuristic procedure, combining the Dantzig-Wolfe decomposi-
tion and theRCAS formulation.

3.1 Dantzig-Wolfe decomposition

Here, we present a Dantzig and Wolfe (1960) decomposition for the problem using the
(RKC) formulation as starting point. The following notation is considered for the reformulation:
let Sp be the set of all vectors of feasible solutions for a platform p ∈ P , let V t,d

p,s be the amount
of product shipped from a platform p ∈ P to terminal t ∈ T (p) at a day d in a solution s ∈ Sp,
and let Cp,s be the cost of a solution s ∈ Sp for a platform p ∈ P . Binary variables λp,s indicate
if a solution s ∈ Sp for a platform p ∈ P is used. The reformulation obtained after applying the
Dantzig-Wolfe decomposition, the so called Dantzig-Wolfe Master (DWM), is the following:

(DWM) min
∑
p∈P

∑
s∈Sp

Cp,sλp,s (24)

subject to ∑
s∈Sp

λp,s = 1 ∀p ∈ P (25)

∑
p∈P

∑
s∈Sp

d∑
τ=1

V
t,τ−Dp,t
p,s λp,s ≥

⌈
ACt,d

Lt

⌉
Lt ∀t ∈ T, d ∈ {1, ..., D} (26)

∑
p∈P

∑
s∈Sp

d∑
τ=1

V
t,τ−Dp,t
p,s λp,s ≤

⌊
CAPt +ACt,d

Lt

⌋
Lt ∀t ∈ T, d ∈ {1, ..., D} (27)

λp,s ∈ {0, 1} ∀p ∈ P, s ∈ Sp. (28)

The objective function (24) aims to minimize the sum of transportation costs. Constraints
(25) ensure that exactly one solution s ∈ Sp variable is chosen for each platform p ∈ P . Constraints
(26) avoid the inventory level at each terminal to be less than zero. Constraints (27) ensure that the
maximum inventory capacity of each terminal will not be exceeded. Finally, constraints (28) define
the λ variables as binaries.

3.2 Pricing subproblem

Let πp be the vector of dual variables associated to constraints (25), θt,d be the vector of
dual variables associated to constraints (26), and σt,d be the vector of dual variables associated to
constraints (27). The binary variables zc,dp,t indicate wether a platform p ∈ P sends a tanker of class
c ∈ C(p) to a terminal t ∈ T (p) at a day d. Thus, for each platform p ∈ P , a pricing subproblem
is defined as follows.

(SPp) min
∑

t∈T (p)

∑
c∈C(p)

D∑
d=1

(2FcDp,t − Vc(θt,d+Dp,t + σt,d+Dp,t))z
c,d
p,t − πp (29)

subject to

∑
t∈T (p)

d∑
τ=1

∑
c∈C(p)

zc,τp,t Vc ≤
⌊
ACp,d

Lp

⌋
Lp ∀d ∈ {1, ..., D} (30)
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∑
t∈T (p)

d∑
τ=1

∑
c∈C(p)

zc,τp,t Vc ≥
⌈
ACp,d − CAPp

Lp

⌉
Lp ∀d ∈ {1, ..., D} (31)

zc,dp,t ∈ {0, 1} ∀t ∈ T (p), c ∈ C(p), d ∈ {1, ..., D}. (32)

The purpose of the Pricing Subproblem is to generate a λ variable to be added to the
Restricted Master Problem (RMP) with the lowest reduced cost, which is represented by the
objective function (29). Constraints (30) avoid the inventory level at each platform to be less than
zero. Constraints (31) ensure that the maximum inventory capacity at each platform will not be
exceeded. At last, z variables are defined as binary by (32). Even though the Pricing Subproblem is
presented as an Integer Linear Program, it can be solved more efficiently by dynamic programming.

3.3 Dynamic Programming

For the Dynamic Programming, let cf and cl be, respectively, the first and the last tanker
class of C and consider the following definitions:

P1,p,c,d,e = {α ∈ {0, 1}|T ||0 ≤ e+ Pp,d −
∑

t∈T Vcαt}
P2,p,c,d,e = {α ∈ {0, 1}|T ||0 ≤ e−

∑
t∈T Vcαt}

P3,p,c,d,e = {α ∈ {0, 1}|T ||0 ≤ e−
∑

t∈T Vcαt ≤ CAPp}

Let Cc,d
p,t = 2FcDp,t − Vc(θt,d+Dp,t + σt,d+Dp,t). Let Cost(d, c, e) be the cheapest cost

from day d to the end of the time horizon, considering only the tanker classes c, ..., cl at day d
(and all classes for the previous days), and inventory level e at the beginning of day d. Define
Cost(d, c, e) = 0 for d = D + 1. Given this, the dynamic programming recursion is as follows:

Cost(d, c, e) =



min
α∈P1,p,c,d,e

{
Cost

(
d, c+ 1, e+ Pp,d −

∑
t∈T

Vcαt

)
+

∑
t∈T

Cc,d
p,tαt

}
, c = cf

min
α∈P2,p,c,d,e

{
Cost

(
d, c+ 1, e−

∑
t∈T

Vcαt

)
+

∑
t∈T

Cc,d
p,tαt

}
, cf < c < cl

min
α∈P3,p,c,d,e

{
Cost

(
d+ 1, 1, e−

∑
t∈T

Vcαt

)
+

∑
t∈T

Cc,d
p,tαt

}
, c = cl,

The optimal cost is Cost(0, 1, ep,0). The Dynamic Programming algorithm is pseu-
dopolynomial. Its computational complexity depends on the maximum inventory capacity of the
platforms. For the harder class of instances, its performance is quite superior to when a MIP is used.
Figure 1a shows the simplest case, with just one lot size. Thus, C = {cf}. The daily production is
always integer. In this example, the inventory capacity of a platform is CAPp = 4, the lot size is
V1 = 2, the production is the same for all days and is given by Pp,d = 2, d ∈ {1, 2, 3}. The initial
inventory is 2 units. There is one terminal with route to all platforms. The daily production is added
to the inventories between the days.

In Figure 1a, the costs for each inventory level and for each day are represented by the
circles. At time d = 0, there is an initial inventory of 2 units and the lowest cost is Cost(0, 1, 2) = 4,
which is also the optimal cost. From d = 0 to d = 1, there are two possibilities: (i) to send a lot
(αt = 1), resulting in inventory of 2 units and cost 2; or (ii) do not send a lot (αt = 0), resulting in
inventory of 4 units and cost 4. The second option is chosen. From d = 1 to d = 2, a lot is sent.
The same happening from d = 2 to d = 3, resulting in an inventory of 4 units at the end of the time
horizon.

Figure 1b shows an example with two lot sizes (C = {cf , cl}), but keeping the daily
production still integer. There are two terminals with route to all platforms. Each lot size can be
sent only once per day, for each terminal. In this example, the inventory capacity of the platform
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(a) Dynamic programming with one lot size (b) Dynamic programming with two lot sizes

Figure 1: Dynamic programming

is CAPp = 4 units, the daily production is Pp,d = 2 units, d ∈ {1, 2, 3}, which is added between
the first and the second lot size, and the initial inventory is 2 units. The first lot has size V1 = 1
unit and costs 1.5. The second lot has size V2 = 2 units and costs 2. Both can be sent to all
terminals, with the same cost. If there are two or more terminals to send a lot size with different
costs, the algorithm chooses always the cheapest terminal available. This happens because the cost
of sending a lot depends on the transportation time. The economy of scale using bigger lot sizes
does not increase the runtime. This is an advantage when compared to the MIP formulation for
the pricing subproblem. The optimal solution is to send the second lot size at days d = 2 and
d = 3, resulting in an inventory e3 = 4 units at the end of the time horizon. The total cost is
Cost(0, 1, 2) = 4.

For the case where the daily production is fractional at least one day, we need to do a
preprocessing. We accumulate the daily productions, and if the accumulated value is fractional,
we decrease the inventory capacity by one unit to have space for the fractional part. The adjusted
daily production is the integer part of the accumulated production, not added yet to the inventory.
Table 1 shows an example with fractional production where the inventory capacity has 6 units. The
first column shows the daily original production, which is fractional and equal 2.75 for all days.
The second column shows the accumulated production. Note that there is only one integer value.
Third column shows the original capacity, 6 units. Fourth column shows the adjusted capacity,
which is equal the original capacity if the accumulated production is integer, or equal the original
capacity minus one, if the accumulated capacity is fractional. The fifth column shows the adjusted
production, which is equal the integer part of the accumulated production not yet added to the
inventory.

Table 1: Dealing with fractional production

Original Accumulated Original Adjusted Adjusted
production production capacity capacity production

2.75 2.75 6 5 2
2.75 5.5 6 5 3
2.75 8.25 6 5 3
2.75 11 6 6 3
2.75 13.75 6 5 2

3.4 Column Generation-Based Heuristic Procedure

The main goal of the heuristic procedure presented in this section is to find a feasible
solution in a smaller amount of time when compared to the heuristic procedures embedded in the
commercial MIP solver. As theRCAS formulation has some difficulty to find feasible solutions at
the beginning of the branch-and-bound algorithm for some instances, we implement a constructive
heuristic using column generation to choose only some z variables with good chance to appear
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in the optimal solution. This reduction in the number of variables allows the branch-and-bound
algorithm to find fast a feasible solution, or prove that no solution can be found with these variables.
Such Column Generation based heuristic is shown in Algorithm 1. First, the linear relaxation of
the DWM reformulation is solved by column generation (line 1). Next, the reduced costs of all
columns present in the final RMP are calculated using the values of the dual variables in the last
iteration of the column generation algorithm (line 2). As these columns must have non-negative
reduced costs, we then sort such columns in ascending order according to their reduced costs (line
3). The parameters min and max are initialized in line 4. In line 5, the parameter k is initialized.
This parameter indicates that the kth first columns of the final RMP must be converted into variables
of RCAS. At each iteration of the main loop (lines 6 – 20), the RCAS formulation is populated
with only the z variables corresponding to the k columns with less positive reduced costs in the final
RMP (line 7). TheRCAS formulation run for up to five seconds (line 8). If the obtained solution is
proved to be optimal (line 9), we keep the solution if it improves the best found so far and increase
k by ten. If a feasible solution is found but optimality was not proved (line 12), we keep the solution
if it improves the best found so far but finish the loop. Lastly, if the solver can not find any feasible
solution in 5 seconds (line 16), the loop stops. Note that if the problem is infeasible, the algorithm
adds ten to k and try again. Then we run theRCAS with the best solution found as input (line 21).
If no solution is found, theRCAS is run without any initial feasible solution.

Algorithm 1 Column Generation based heuristic
1: Run column generation to solve DWM
2: Calculate the reduced cost of the columns using the dual variables of the last iteration
3: Sort the columns according to their reduced costs
4: min← 30, max← 150
5: k ← min
6: while k ≤ max do
7: Convert k columns of DWM with less positive reduced costs into variables ofRCAS
8: RunRCAS for up to five seconds
9: if optimal solution found then

10: Keep the solution if the best found
11: end if
12: if feasible solution found then
13: Keep the solution if the best found
14: Exit while
15: end if
16: if no solution found then
17: Exit while
18: end if
19: k ← k + 10
20: end while
21: RunRCAS for the remaining time using the best solution found

4 Computational results

In this section we show the results obtained by the described formulations using the
instances proposed in Rocha et al. (2011) and Aizemberg et al. (2012). All the tests, including
those for the formulation with the best performance proposed by Rocha et al. (2011) (HullRel) and
by Aizemberg et al. (2012), were run in a PC with an Intel Core 2 Quad Q8300 2.50 GHz CPU, 2
GB RAM under Windows 7 OS using ILOG CPLEX 12.1. All instance classes have 25 instances
and all instances have 9 platforms and 2 terminals. The first instance class has one lot size per route
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(medium) and the second has two lot sizes per route (hard). In those two classes, some routes are
missing. The third instance class has five lot sizes per route and all platforms are allowed to send
product to all terminals (harder).

The results for the medium and hard classes of instances are shown separately from those
for the harder class of instances. The tables contain, for each formulation, the average results
obtained. Among the results, two performance measures are shown, given by:

gapLB = 100× UBb − LBf

UBb
, (33) gapUB = 100× UBf − UBb

UBb
, (34)

where UBb is the best integer feasible solution found among all formulations, LBf is the lower
bound for a given formulation, and UBf is the best integer feasible solution found by a given
formulation.

The results obtained for the medium and hard classes of instances are shown in Tables
2 and 3, respectively. In the tables, the column Formulation shows the formulations tested.
The formulation RCAR is the Rounded Cascading Accumulated in Routes formulation and the
RCAS is the Rounded Cascading Accumulated in Sites formulation. Column Time (s) shows
the average execution time in seconds for each class of instances. For all tests performed, the
maximum execution time allowed for each instance is 720 seconds. Column gapLB root (%)
shows the average gapLB at the root node, calculated using the gapLB of each instance given by
(33) considering LBf as the lower bound at the root node. Column final gapLB (%) contains
the average gapLB at the end of the execution time of each instance and it is also calculated by
(33), where LBf is the lower bound at the end of the execution time of each instance. Column
gapUB (%) shows the average gapUB obtained at the end of executions and calculated by (34)
for each instance. Column No. of nodes contains the average number of nodes solved at the
branch-and-bound algorithm. Finally, column Instances solved shows the number of instances of
each class solved to optimality.

Table 2: Average results and number of instances solved for the mathematical formulations and
results taken from Rocha et al. (2011) for the medium class of instances

Time gapLB final gapUB No. of Instances
Formulation (s) root (%) gapLB (%) (%) nodes solved

RCAS 1.28 0.23 0.00 0.00 3405 all
RCAR (Aizemberg et al) 30.61 0.18 0.00 0.00 146637 24
HullRel (Rocha et al) 351.53 – – 0.04 – 13

Table 3: Average results and number of instances solved for the mathematical formulations and
results taken from Rocha et al. (2011) for the hard class of instances

Time gapLB final gapUB No. of Instances
Formulation (s) root (%) gapLB (%) (%) nodes solved

RCAS 98.21 1.30 0.77 0.00 32761 22
RCAR (Aizemberg et al) 102.94 1.47 0.79 0.03 53669 22
HullRel (Rocha et al) 691.40 – – 1.24 – 1

In Tables 2 and 3 one can observe that the new formulation outperforms the literature
results reported in Rocha et al. (2011) and Aizemberg et al. (2012). Even though the HullRel has a
low average gapUB , this formulation was capable of solving only thirteen instances of the medium
class to optimality, and one of the hard class. This fact impacts in the average execution time, which
is close to the maximum allowed, for the hard class of instances.
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Comparing the RCAR with RCAS, we can note that accumulating the lot sizes per site
is better than per route. We believe that this happens because there are more routes than sites in
all instances. In Table 2, we can see that the execution time of the RCAS is almost zero, and
this formulation solved to optimality all the 25 instances. The RCAR formulation has a very low
execution time too, but could not solve all 25 instances. The number of nodes visited of theRCAS
formulation is much smaller thanRCAR. In Table 3, we can see that theRCAS is still better than
theRCAR, but the difference is small. Both have small execution times and gapUB , and solved 22
of 25 instances to optimality. We conclude that, for the instances used in this paper, RCAS is the
best formulation.

Table 4: Average results and number of instances solved for the RCAS formulation with and
without the column generation-based heuristic for the harder class of instances generated

Time gapLB gapLB gapUB No. of Instances
Formulation (s) root (%) final (%) (%) nodes solved

RCAR(Aizemberg et al) 637.64 8.79 7.16 – 14044 3
RCAS 550.15 5.90 5.01 0.68 5935057 7
RCAS − CGH 498.62 5.81 4.76 0.13 130949 10

We use the harder class of instances to compare the formulations with the best perfor-
mance on the other classes,RCAR andRCAS, and theRCAS preceded by the heuristic described
in subsection 3.4 (RCAS − CGH). We note that, for instances without feasible solution after run
RCAS for 12 minutes, the heuristic has reduced chance to find a feasible solution. However, in case
where the model finds some solution within the 12 minutes, the heuristic usually finds an improved
solution to use as input to theRCAS formulation very quickly.

The results obtained for the harder class of instances are shown in Table 4. Comparing
RCAS to RCAR, we can see a good improvement. RCAS proved the optimality of 7 instances,
against 3 of RCAR. The average final gapLB of RCAS is 30% smaller. Comparing the RCAS
with and without the heuristic, we can see a good improvement when the heuristic is used, solving
to optimality 10 of the 25 instances, against 7 without heuristic. The average gapUB shows that, as
expected, the heuristic allows the formulation to find better feasible solutions. The average Time of
RCAS − CGH include the heuristic runtime. Considering only the heuristic runtime, the average
time is 11.53 seconds, with a minimum of 7 seconds and a maximum of 16.78 seconds. The root
gapLB , final gapLB and the gapUB in Table 4 are compared with the best solution found for each
instance. To find optimal or near optimal solution of all instances of the harder class (to be used
as the UBb value), we run each instance for many hours, using as cutoff the best solution found in
previous tests.

5 Conclusions

This work presented a modeling study for the oil transportation problem. For this problem,
a new formulation was devised: the Rounded Cascading Accumulated in Sites Formulation
(RCAS). This formulation was compared to two formulations from literature, the Rounded
Cascading Accumulated in Routes Formulation (RCAR) (Aizemberg et al., 2012) and the
Knapsack Cascading (KC) (Rocha et al., 2011), achieving a better performance for all three classes
of instances taken from literature. For theRCAS, we construct a column generation-based heuristic
that improve the formulation performance.
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