
XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Bi-objective Multicast Packing Problem

Romerito Campos de Andrade

Universidade Federal do Rio Grande do Norte - UFRN

Campus Universitário – Lagoa Nova – 59078-970 – Natal/RN

romerito@ppgsc.ufrn.br

Marco César Goldbarg

Universidade Federal do Rio Grande do Norte - UFRN

Campus Universitário – Lagoa Nova – 59078-970 – Natal/RN

gold@dimap.ufrn.br

Elizabeth Ferreira Gouvêa Goldbarg

Universidade Federal do Rio Grande do Norte - UFRN

Campus Universitário – Lagoa Nova – 59078-970 – Natal/RN

beth@dimap.ufrn.br

ABSTRACT

This paper addresses the Multicast Packing Problem under a bi-objective viewpoint.

Given a set of multicast groups in a network, the problem considered here consists in creating

multicast trees, one for each group, and accommodating them in a network. Two objectives are

considered simultaneously: minimizing installation cost and maximizing residual capacity. Three

metaheuristic approaches are proposed to tackle the problem based on Greedy Randomized

Adaptive Search Procedure, Non-dominated Sorting Genetic Algorithm 2 and Strength Pareto

Evolutionary Algorithm 2. Operators to create, recombine and mutate solutions are proposed.

Results of a computational experiment on eighty-nine instances are reported.

KEYWORDS. Multicast packing, Multiobjective optimization, Network optimization.

Main area: Metaheuristics.

1. Introduction

Nowadays, a lot of applications in telecommunications run simultaneously in the
Internet. Some examples are Internet TV, video-conferencing, on-line games (Wu, 2005) and
software delivering (Han and Shahmehri, 2000), among others. These applications share a
common interest: an efficient away for point-to-multipoint communication from a source to
multiple destination nodes. Basically, there are two ways to establish connections between a
source and a group of destination nodes: unicast and multicast. Unicast is the simplest way to
connect, but it comes at a price. The main problems are related to sending several copies of a
package in the same arc of the network (considering multiple destinations). In the multicast
technique such limitations are dealt with the sharing of packages reducing the number of copies.
Multicast transmission plays an important role in the utilization of network resources. It must
create a route to send packages from a source to destinations. There are many ways to connect
nodes regarding multicast transmission, such as Steiner trees, center based trees and ring based
routing (Oliveira, 2004). A comparison between the ring based routing and the Steiner tree
approaches indicates that more arcs are needed in the former than in the latter to establish a
multicast connection (Medina et al., 2001). The center based tree approach has an additional
problem as it is necessary to find a center in the network and it should be near to destination
nodes.

1904

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

The problem called multicast routing problem considers one multicast group only. It has
been addressed with one (Resende and Pardalos, 2006) or multiple criteria (Cui et al., 2003) and
(Xu, 2011). The installation cost is the criterion investigated by Resende and Pardalos (2006).
Four objectives are considered by Cui et al. (2003): end-to-end delay; link utilization; packet lost;
delay jitter. The idea is to create a multicast tree with QoS (Quality of Service) requirements. Xu
(2011) investigates the problem with five objectives: tree cost; maximal end-to-end delay; delay
jitter; average delay and link utilization.

When more than one multicast group has to be configured simultaneously in a network,
the problem is called Multicast Packing Problem (MPP). In this problem, one multicast tree must

be assigned to each multicast group k  K. The MPP was investigated by (Chen et al., 2000) with
the objective of minimizing the network congestion. Lee and Cho (2004) investigated the
maximization of the residual capacity. Kang et al.(2009) consider the optimization of the cost to
configure a finite number of multicast groups in a network. Other authors have also considered the
problem with the objective of cost minimization (Jia and Wang, 1997; Low and Wang, 1999;
Wang et al., 2002).

The MPP has not been studied under a multi-objective viewpoint. In (Chen, Gunluk, &
Yener, 2000) the authors, clearly, try to consider congestion (Among all edges in the netwok,
consider the edge with the most load of traffic over it as the congestion of the network) and cost,
but the latter is considered as a penalty added to the objective function. Kang et al. (2009)
consider the problem of optimizing the cost with a hop-constraint as a QoS measure.

In this paper, Steiner trees are used to represent solutions. The MPP is considered with

two objectives that are treated with equal importance. The objectives are: cost and residual

capacity (Lee and Cho, 2004). The objective is to minimize the installation cost and maximize the

residual capacity. These objectives represent a trade-off since the minimization of the installation

directs solution to using few arcs, increasing the congestion. On the other hand, the maximization

of the residual capacity may increase the cost.
Three algorithms, Greedy Randomized Adaptive Search Procedure (GRASP) proposed

by Feo and Resende (1995), Non-dominated Sorting Genetic Algorithm 2 (NSGA2) proposed by
Deb et.al. (2002) and Strength Pareto Evolutionary Algorithm 2(SPEA2) proposed by (Zitzler,
Laumanns, & Thiele, 2001), are presented for the MPP. To create these algorithms several
operators are proposed: two operators to create initial solutions; one recombination operator and
one mutation operator; one neighborhood and one local search procedure based on Pareto Local
Search (PLS) (Paquete and Stützle, 2006). Eighty-nine instances were created to test the proposed
algorithms. These algorithms were compared based on the hypervolume quality indicator (IH)
proposed in (Zitzler and Thiele, 1999). The Mann-Whitney’s test was used (Conover, 1980).

Section II presents the problem formulation considering a mathematical model based on
multi-objective optimization. Section III presents the solution representation and the algorithms.
Section IV presents the experimental results. Finally, Section V presents conclusions.

2. Problem Formulation

Given a graph G=(V,E), where V represents the set of vertexes and E the set of edges,

two values are defined for each e E: the cost of using edge e in a solution, c(e), and the
maximum traffic supported by e, called capacity of e, b(e). Consider K a set of multicast groups
that must be accommodated simultaneously in the network represented by G. For each multicast

group k  K, sk is the source node, Dk is the set of destination nodes and tk is the traffic
requirement of the k-th multicast group. The traffic requirement of a group is defined as the
minimum capacity required of an edge of that group. A tree must be defined for each multicast

group, where decision variable 1k

ex if edge e is in the k-th multicast tree, otherwise .0k

ex An

edge e can be in more than one multicast tree. An MPP solution is a set  ||21 ,...,, KTTTT of

multicast trees. Consider TE the set of edges used by the |K| trees of an MPP solution, the

problem consists in optimizing simultaneously the two objectives presented in equations 1 and 3.
The first objective, presented in equation 1, is to minimize the installation cost. The second
objective consists in maximizing the minimal residual capacity of an edge in ET. The residual

1905

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

capacity of TEe is defined as in Lee and Cho(2004) and presented in equation 2. The second

objective function is to maximize the minimum residual capacity as presented in equation 3. The
minimal residual capacity represents a bottleneck in the network. It can make the tree increase
with try to maximize its value, considering the sharing the congestion of the network is made by
using more edges increasing the cost. In this case, it is important maximize this value. The two
objectives are considered simultaneously. The capacity of each edge cannot be violated. This
constraint is expressed in equation 4.

 
 


||

1

1

K

k Ee

k

e

T

xecf (1)

  



||

1

K

k

k

eke xtebz (2)

},min{2 Tee Ezf  (3)

   



||

1

K

k

k

ek xteb (4)

Let Vk be the set of vertices of the k-th multicast tree. A bi-objective mathematical

model for the MPP can be defined as:

min f1, max f2

subject to

   



||

1

K

k

k

ek xteb

 {Dk  {sk}}  Vk ,  Tk  T

  1,0k

ex

3. Algorithms

This section presents the proposed algorithms, their operators and methods. First, the

solution representation is described in Section 3.1. Then, the GRASP algorithm and the

evolutionary approaches are presented in Sections 3.2 and 3.3, respectively.

3.1 Solution Representation

Basically, an MPP solution consists of a list of Steiner Trees, one for each multicast
group. Each Steiner Tree is represented by a list of edges. Then, the solution representation
consists of a list of lists of edges.

Two heuristics were implemented to create Steiner trees. These heuristics are modified
versions of others presented previously to the Steiner Tree Problem.

The first heuristic is a randomized version of the algorithm proposed in (Takahashi and
Matsuyama, 1980), named RandomTM. The modified heuristics is presented in algorithm 1 and is
used to create the Steiner tree corresponding to the k-th multicast group. In (Takahashi and
Matsuyama, 1980) the algorithm starts adding a terminal node to an empty tree. Then, another
terminal is added based on the shortest path between it and a node in the tree. In the version
proposed in this paper each terminal node to be added to the tree is chosen at random. The set of
terminal nodes of the k-th multicast group Dk is created in line 1 of algorithm 1. The source node
of the k-th multicast group, sk, is set in line 2. The first node added to the tree is the source (line 3).
Then, a new node is selected at random from Dk. It is linked to the source by the shortest path
between them (lines 4 and 5). The shortest path is obtained with Dijkstra’s algorithm (Dijkstra,

1906

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

1956). The remaining destination nodes are added to the tree in the main loop between lines 8 and
13. One node in the tree and one node out of the tree (line 9) are chosen randomly and the shortest
path between them is computed (line 10). This process is repeated until all destination nodes are in
the tree. The inclusion of a path in the tree may create cycles. Therefore procedure
nodeNotInSolution() is called to avoid the creation of cycles.

Algorithm 1 – RandomTM

Input: MulticastGroup k, Graph G

Output: SteinerTree S

1: Dk DestinationNodes (k)

2: sk Source (k)

3: S sk

4: d randNode (Dk)

5: Path Dijkstra (d, sk)

6: S S  { NodeNotInSolution(path) }

7: remove(d, Dk)

8: while size (Dk) > 0

9 d randNode(Dk)

10: path Dijkstra (d, randNode(S))

11: S S { NodeNotInSolution(path) }

12: remove (d, Dk)

13: end while

The second heuristic is based on Kruskal’s algorithm to generate minimum spanning

trees (Kruskal, 1956). It will be referred to as algorithm 2 in this paper. The goal is to create

multicast trees that contribute to maximize the minimal residual capacity. Basically, it works like

Kruskal’s algorithm, but in this version a restricted candidate list (Martins et al., 1999) is

implemented from where the next edge to be added to the tree is picked. The edges are sorted in

ascending order of capacities in list L. One edge is selected at random from the 30% first ones in

list L. The selected edge is added to the tree if it does not induce a cycle. The procedure continues

until a tree is built with all terminal nodes of the k-th multicast group. The trees created by each

algorithm are submitted to a procedure to eliminate leaves that are not terminal nodes.

Algorithm 2 – Algorithm based on Minimum Spanning Trees

Input Graph G(V,E), MultcastGroup k

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

DisjointSet DS AddNodes(V)

L sort (E)

while L

pos randNumber (0, size(L) * 0.3)

e L[pos]

 if DS.union(e.x , e.y) then //if a cycle is not created

 S S  {e}

 end if

remove(e, L)

end while

3.2 GRASP
The construction phase of the GRASP algorithm is presented in Algorithm 3. The

algorithm has four input parameters: a graph G representing the network; the set of multicast
groups, K; a reference for a heuristics (algorithm 1 or 2); the length of the restricted candidate list,
NRCL.

The algorithm contains a main loop in which |K| trees are created (one for each multicast
group k ∈ K). The loop starts by choosing a multicast group k at random (line 2). All edges from G

1907

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

that do not support the traffic required by the k-th multicast group, tk , are removed (line 3). A
restricted candidate list RCL is created to the k-th multicast group, heuristic h (algorithm 1 or
algorithm 2) in line 4. The RCL contains NRCL Steiner trees. A multicast tree is chosen randomly
for k (line 5). This multicast tree is added to the MPP solution (line 6). After, the graph is restored
in line 7(the edges removed are reinserted). The loop iterates until a Steiner tree is associated with
each multicast group.

Algorithm 3 – Solution creator based on Restricted Candidate List.

Input Graph G, MulticastGroups K, Heuristic h, NRCL

Output MPPSolution T

1:

2:

3:

4:

5:

6:

7:

8:

9:

While |K| > 0 do

k chooseGroupRAndomly (K)

remove (k, G)

RCL creatList (h,k, NRCL)

SteinerTree Tk chooseComponent (RCL)

T  T  Tk
restore(G)

K K – {k}

end while

Algorithm 4 – Local Search Operator for the MPP

Input: MPPSolution T

Output: Non-dominated Archive A

 1: TAA 

 2: T.visited false

 3: while T’  A | T’.visited = false do

 4: for T’  Neighborhood(T’) do

 5: if not (S, S  A)|S  T” then

 6: T”.visited = false

 7: for S  A do

 8: if T”  S then

 9: AA-S

10: end if

11: end for

12: AAT”

13: end if

14: end for

15: T’.visited  true

16: end while

The local search operator used in the GRASP algorithm is based on the PLS algorithm

proposed by Paquete and Stützle (2006). The neighborhood structure consists of the systematic

substitution of each multicast tree corresponding to a group in the input MPP solution. For

example, given an MPP instance with five multicast groups, for each multicast group k a

multicast tree is replaced by a new multicast tree relative to k. The number of neighbors is equal

to the number of multicast groups. . For example, given an MPP solution T = {T1,…,T|K|}, a

neighbor T’ = {T’1,…,T’|K|}, of T consists of a solution where i, 1  i  |K|, such that T’i ≠ Ti and

j, j ≠ i, 1  j  |K|, T’j= Tj.

The local search procedure receives solution I as input parameter and adds it to archive

A, the output of the algorithm. Solution I is marked “false”, meaning that it has not been

explored. The main loop of the local search is started. While there is, at least, one solution I
′
 not

1908

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

explored in A (line 3), each of its neighbors, I”, is generated (line 4). If I” is not dominated by

any solution in A (line 5), the algorithm checks for solutions in A dominated by I” and remove

them, if they exist (lines 7 and 8). I
′′
 is added to A (line 12). Finally, the individual I

′
 is marked as

explored (line 15). The algorithm returns the set of non-dominated solutions A.

The GRASP is shown in algorithm 5. Variable h is set to 0 or 1, whether algorithm 1 or

2, respectively, is assigned to the construction procedure shown in algorithm 4. In the main loop

an MPP solution S is created with heuristic h (line 5) – algorithm 1 or algorithm 2. Local search

is applied to S (line 6) returning archive At of non-dominated solutions generated in the t-th

GRASP iteration. The algorithm maintains an archive Q of non-dominated solutions generated

along the GRASP iterations. Each iteration Q is updated to maintain only non-dominated

solutions (line 5). The algorithm changes the reference of the heuristic used to construct a new

solution (line 6). This process is repeated until the algorithm performs tmax iterations and the

algorithm returns Q.

Algorithm 5 – GRASP

 Input: tmax

Output: NonDominatedSet Q

1: t  0; h  0

2: While (t < tmax)

3: S  CreateSolution(h)

4: At  LocalSearch(S)

5: Q  Q  At

6: h  not h

7: end_while

8: return(Q)

3.3 NSGA2 and SPEA2

This section presents the operators used in algorithms NSGA2 and SPEA2. Those were

implemented following the directions given in the works of Deb et al. (2002) and Zitzler et al.

(2002), respectively.

The procedure presented in Algorithm 6 was used to create MPP solutions. The input

data are: a graph G, the set K of multicast groups and a reference for a constructive heuristics

(algorithms 1 or 2). Algorithm 6 builds iteratively a tree for each multicast group in K. It starts

choosing a group k ∈ K at random and removing from G all edges that do not support the

required traffic (line 3). A construction heuristic is randomly chosen and a multicast tree is

created (lines 4 and 5). This process is repeated until the trees of all multicast groups are created.

Algorithm 6 – Solution creator

Input: Graph G(V,E) , MulticastGroups K, Heuristic H

Output: MPPSolution T

1:

2:

3:

4:

5:

6:

7:

8:

9:

While |K| > 0 d

k chooseGroupRAndomly (K)

remove (k, G)

h chooseHeuristicRandomly (H)

Tk createSteinerTreeh(h,k)

T T Tk

restore(G)

K K – {k}

end while

The recombination operator for the MPP solutions uses the recombination procedure for

Steiner tree presented in Algorithm 7 called STRecomb. It is a modified version of the algorithm

proposed by Ravikumar and Bajpai (1998). Algorithm 7 recombines two Steiner trees

1909

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

corresponding to the k-th multicast group of two MPP solutions T1 and T2 and returns Steiner

tree T[k].

Algorithm 7 – STRecomb Algorithm 8 - MPPRecomb

Input: SteinerTrees T1[k], T2[k]

Output: SteinerTree T

Input: S1, S2, |K|

Output: S

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

E common_edges(T1[k], T2[k])

if isEmpty (E) then

 T lowestCost (T1[k], T2[k])

else

 if ConnectComponent(E)

 T E

 else

N DestinationNodes (k)

for n ∈ N do

if n NotIn(T) then

p getNodeRandomly (T)

path Dijkstra(p,n)

T  T  {path}

end if

end for

end if

1:

2:

3:

4:

5:

6:

7:

pos  random(0,|K|)

for i  0; i < pos; i++ do

S[i]  STrecomb(S1[i],S2[i])

end for

for (i  pos; i < |K|; i++) do

S[i]  S2[i]

end for

The first step of algorithm 7 computes the set of common edges in Steiner trees T1[k]

and T2[k]. If this set is empty (line 2), the Steiner tree with the lowest cost is set to T[k] (line 3).
Function ConnectComponents() checks whether set E corresponds to a connected graph (line 4).
If it is connected, then T is the tree corresponding to E. Otherwise, edges that link connected
components are added to this set. After, if there are, at least, two disjoint sets, they are joined using
the shortest path between them. The path is computed using Dijkstra’s algorithm.

The loop from line 9 to 15 is executed to include destination nodes in group k that are
not in tree T. The isolated destination node is added to T by the shortest path between it and a
random node in T.

Algorithm 8 is used to recombine MPP solutions. It receives two MPP solutions, S1 and
S2, and the number of multicast groups K. The output is MPP solution S. Initially, a cut point, pos,
is defined (line 1). The trees corresponding to MPP Solutions T1 and T2 between positions 0 and
pos-1 are recombined with algorithm 7 (line 3). The other Steiner trees of the offspring are copied
from T2 (lines 5 to 7).

Mutation

The mutation operator uses one of the two heuristics (algorithm 1 or 2) to alter a given

MPP solution, S. A multicast group k is randomly chosen from S. A tree associated to k is

removed from S and a construction heuristic is randomly chosen to generate a new Steiner tree to

the k-th component of S.

4. Experiments

The experiments were performed in an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz

using the Ubuntu operational system. All codes were implemented in C++. The process to create
the instances for the experiments incorporated the Waxman’s model (Waxman, 1988) and the
Framework BRITE (Medina et al., 2001). Instances are classified according to number of nodes
and number of multicast groups. Instances were created with 30, 60 and 120 nodes and 5, 10, 15,
20 and 25 multicast groups. Other characteristics of those instances are presented in Table I, where

1910

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

column nodes presents the number of nodes, column Node/group shows the percentage of nodes
considered for each multicast group.

Nodes(N) Groups Node/Group Capacity Edges(E)
30 5,10,15,20,25 20-30% 15 a 85 2N
60 5,10,15,20,25 15-30% 25 a 85 2N

120 5,10,15,20,25 10-30% 35 a 85 2N
Table 1 – Instances characteristics

The approximation sets produced by each approach were compared with the
hypervolume indicator (IH). The Mann-Whitney’s test was applied to the results.

The parameters of NSGA2 are: population size = 150, recombination rate = 0.5 and
mutation rate =0.3. The parameters of SPEA2 are: population size = 150, archive size = 20,
recombination rate = 0.5 and mutation rate 0.1. The size of the RCL in the GRASP algorithm was
0.3n, where n denotes the number of destination nodes.

Instance
HI Instance

HI Instance
HI

B030_1 1 B060_1 1 B120_1 1

B030_2 1 B060_2 1 B120_2 1

B030_3 1 B060_3 1 B120_3 1

B030_4 1 B060_4 1 B120_4 1

B030_5 1 B060_5 1 B120_5 1

B030_6 1 B060_6 1 B120_6 1

B030_7 0,9999977 B060_7 1 B120_7 1

B030_8 0,9999974 B060_8 1 B120_8 1

B030_9 1 B060_9 1 B120_9 1

B030_10 1 B060_10 1 B120_10 1

B030_11 1 B060_11 1 B120_11 1

B030_12 1 B060_12 1 B120_12 1

B030_13 1 B060_13 1 B120_13 1

B030_14 1 B060_14 1 B120_14 1

B030_15 0,9999997 B060_15 1 B120_15 1

B030_16 0,9999384 B060_16 1 B120_16 1

B030_17 3,75E-011 B060_17 1 B120_17 1

B030_18 1 B060_18 1 B120_18 1

B030_19 2,55E-007 B060_19 0,1403482 B120_19 1

B030_20 1 B060_20 1 B120_20 1

B030_21 0,9879794 B060_21 0,00170355 B120_21 6,06E-007

B030_22 1,27E-014 B060_22 1 B120_22 1

B030_23 1,50E-015 B060_23 1 B120_23 0,9999999

B030_24 1 B060_24 1 B120_24 1

B030_25 2,78E-010 B060_25 5,76E-007 B120_25 2,61E-006

B030_26 8,37E-015 B060_26 2,82E-033 B120_26 1

B030_27 0,2566827 B060_27 0,999925 B120_27 0,892516

B030_28 1,72E-030 B060_28 1 B120_28 1

B030_29 6,44E-024 B060_29 0,9999999 B120_29 1

- - B060_30 9,22E-005 B120_30 1,12E-010

Table 2 - Comparison between NSGA2 and GRASP

The processing time was fixed in 60s, 120s and 300s for instances with 30, 60 and 120
nodes, respectively. One hundred independent executions of each algorithm were performed for
each instance. Tables 2-3 present the p-values returned by the Mann-Whitney’s test for pairwise
comparisons.

1911

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Table 2 shows the comparison between GRASP and NSGA2. The underlined values
indicate that the NSGA2 produced approximation sets better than the ones produced by GRASP.
Bold values indicate the opposite, i.e., GRASP is better than NSGA2. Considering significance
level 0.01, the results show that the NSGA2 outperforms the GRASP in 74 instances.

Instance HI

Instance HI

Instance HI

B030_1 5,91E-030

B060_1 1,32E-034

B120_1 1,28E-034

B030_2 2,01E-034

B060_2 1,44E-034

B120_2 1,28E-034

B030_3 2,63E-034

B060_3 1,36E-034

B120_3 1,28E-034

B030_4 1,28E-034

B060_4 1,28E-034

B120_4 1,28E-034

B030_5 1,33E-032

B060_5 1,32E-034

B120_5 1,81E-033

B030_6 2,60E-032

B060_6 1,28E-034

B120_6 1,28E-034

B030_7 3,74E-015

B060_7 6,42E-030

B120_7 1,28E-034

B030_8 1,19E-005

B060_8 1,49E-034

B120_8 6,33E-028

B030_9 6,43E-031

B060_9 1,28E-034

B120_9 1,28E-034

B030_10 6,14E-025

B060_10 1,28E-034

B120_10 1,28E-034

B030_11 8,53E-031

B060_11 1,36E-034

B120_11 1,28E-034

B030_12 1,28E-034

B060_12 1,28E-034

B120_12 1,28E-034

B030_13 1,68E-034

B060_13 1,89E-034

B120_13 5,28E-023

B030_14 2,55E-014

B060_14 6,79E-015

B120_14 1,34E-031

B030_15 0,00542905

B060_15 3,44E-034

B120_15 1,78E-034

B030_16 5,25E-005

B060_16 8,16E-034

B120_16 4,44E-022

B030_17 1

B060_17 7,03E-034

B120_17 1,28E-034

B030_18 8,73E-032

B060_18 4,69E-008

B120_18 2,79E-034

B030_19 1

B060_19 0,9996539

B120_19 1,54E-032

B030_20 1,48E-024

B060_20 0,1201878

B120_20 5,22E-007

B030_21 0,00061597

B060_21 0,9861926

B120_21 1

B030_22 1

B060_22 3,65E-034

B120_22 2,79E-034

B030_23 1

B060_23 2,35E-015

B120_23 0,9999906

B030_24 0,00093021

B060_24 2,10E-033

B120_24 5,03E-023

B030_25 1

B060_25 0,9999996

B120_25 1

B030_26 1

B060_26 1

B120_26 9,24E-032

B030_27 0,9684295

B060_27 0,5403838

B120_27 1

B030_28 1

B060_28 1,64E-026

B120_28 5,25E-005

B030_29 1

B060_29 0,0041443

B120_29 1,36E-034

B060_30 0,9999999

B120_30 1

Table 3 – Comparison between SPEA2 and GRASP

Table 3 shows the comparison between SPEA2 and GRASP. Bold values indicate that

the SPEA2 has approximation sets better than the GRASP. Underlined values indicate the
opposite, GRASP has better approximation sets. In the same way of the NSG2, the SPEA2
outperforms the GRASP algorithm in almost all instances. The SPEA2 outperforms the GRASP in
70 instances.

Table 4 shows the comparisons between the NSGA2 and the SPEA2 algorithms
presented for the MPP, bold values indicates that SPEA2 is better than NSGA2, underlined values
indicate the opposite, i.e., NSGA2 is better than SPEA2 . The results on instances with 30 nodes
do not support conclusions of superior performance of one of the two tested algorithms.
Nevertheless, NSGA2 exhibits better performance than NSGA2 on groups of instances with 60
and 120 nodes. This conclusion is supported by the fact that the SPEA2 does not outperform the
NSGA2 algorithm in any instances including groups of instances with 60 and 120 nodes. On the
other hand, the NSGA2 outperforms the SPEA2 algorithm 32 instances.

The evolutionary algorithms outperform the GRASP algorithm in the previous
comparisons. Therefore, a comparison between them can indicate which is better. The table 4
illustrates the comparison. For instances with size equal 30 nodes there was not an algorithm

1912

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

outperforming other algorithm, but for instances with size equal 60 and 120 nodes the NSGA2
algorithm outperforms the SPEA2 in most of instances.

Instance HI

Instance HI

Instance HI

B030_1 0,9254646

B060_1 0,9988946

B120_1 1

B030_2 0,5233811

B060_2 0,8601958

B120_2 0,6167178

B030_3 0,6204433

B060_3 0,9219611

B120_3 0,2622244

B030_4 0,7824996

B060_4 0,9997759

B120_4 0,9810372

B030_5 0,9925508

B060_5 0,9376903

B120_5 0,8478945

B030_6 0,7903224

B060_6 0,2694384

B120_6 0,3519924

B030_7 0,03577276

B060_7 1

B120_7 0,07282936

B030_8 0,4936643

B060_8 0,9999526

B120_8 0,9996251

B030_9 0,06661799

B060_9 0,9456523

B120_9 0,9999665

B030_10 0,3767698

B060_10 0,9856672

B120_10 0,141989

B030_11 0,09871858

B060_11 0,470297

B120_11 0,9782803

B030_12 0,8841593

B060_12 0,4153529

B120_12 0,6443734

B030_13 0,700747

B060_13 0,299253

B120_13 0,9805803

B030_14 0,9945328

B060_14 0,9898295

B120_14 0,9961169

B030_15 0,8655574

B060_15 0,9890795

B120_15 0,9999859

B030_16 0,4441345

B060_16 0,9719017

B120_16 0,9802316

B030_17 0,1555198

B060_17 0,8812738

B120_17 0,8094727

B030_18 0,4470316

B060_18 0,9868516

B120_18 0,9898295

B030_19 0,9240779

B060_19 0,9938045

B120_19 1

B030_20 0,7986646

B060_20 0,9999981

B120_20 0,9998594

B030_21 0,1299976

B060_21 0,4239471

B120_21 1

B030_22 0,4153528

B060_22 0,1287099

B120_22 0,9806954

B030_23 0,6653568

B060_23 0,9990225

B120_23 1

B030_24 0,996838

B060_24 0,9991368

B120_24 0,9999998

B030_25 0,9437415

B060_25 0,8000353

B120_25 1

B030_26 0,9581777

B060_26 0,2284346

B120_26 0,9980993

B030_27 0,8348949

B060_27 0,999964

B120_27 1

B030_28 0,7828607

B060_28 0,6167178

B120_28 1

B030_29 0,6352308

B060_29 0,9947581

B120_29 0,07282936

B060_30 0,8995716

B120_30 1

Table 4 - Comparison between NSGA2 and SPEA2.

5. Conclusions

This paper presented a study on the Multicast Packing Problem under the viewpoint of

multi-objective optimization. A mathematical formulation was presented, incorporating two
important requirements in multicast trees construction: cost and residual capacity. An NSGA2, a
SPEA2 and a GRASP algorithm were proposed in this paper for the MPP. Eighty-nine instances
were created for the computational experiments. They were compared based on the results of the
Mann-Whitney’s test performed on the values of the hypervolume indicator of the approximation
sets generated by the tested algorithms. There is statistical evidence that NSGA2 outperformed the
other algorithms on the set of instances considered in the experiment.

Acknowledgments
This research was partially supported by CNPq and CAPES.

1913

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

References

Chen, S., Gunluk, O., and Yener, B. (2000). The Multicast Packing Problem. IEEE/ACM

TRANSACTIONS ON NETWORKING, 8, 311-318.

Conover, W. (1980). Practical nonparametric statistics. Wiley.

Cui, X., Lin, C., and Wei, Y. (2003). A Multiobjective Model for QoS Multicast Routing Based

on Genetic Algorithm. Proceedings of the 2003 International Conference on Computer Networks

and Mobile Computing (pp. 49--). Washington, DC, USA: IEEE Computer Society.

Feo, T. and Resende, M. (1995), Greedy Randomized Adaptive Search Procedures. J. of Global

Optimization, v. 6, p. 109133.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast Elitist Multi-Objective

Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182-197.

Dijkstra, E. W. (1956). A Note on two problems in connection with graphs. Numerische math, 1,

269-271.

Han, L., and Shahmehri, N. (2000). Secure multicast software delivery. Enabling Technologies:

Infrastructure for Collaborative Enterprises, 2000. (WET ICE 2000). Proeedings. IEEE 9th

International Workshops on, (pp. 207-212).

Jia, X., and Wang, L. (1997). A group multicast routing algorithm by using multiple minimum

Steiner trees. Computer Communications, 20(9), 750-758.

Kang, J., Park, K., and Park, S. (2009). Optimal multicast route packing. European Journal of

Operational Research, 196, 351-359.

Kruskal, J. B. (February de 1956). On the Shortest Subtree of a Graph and the Traveling

Salesman Problem. 48-50.

Lee, C. Y., and Cho, H. K. (June de 2004). Multiple multicast tree allocation in IP network.

Comput. Oper. Res., 31, 1115-1133.

Low, C. P., and Wang, N. (1999). An Efficient Algorithm for Group Multicast Routing with

Bandwidth Reservation. Proceedings of the 7th IEEE International Conference on Networks (pp.

43--). Washington, DC, USA: IEEE Computer Society.

Martí, R., Campos, V., Resende, M. C., and Duarte, A. (June de 2011). Multi-Objective Grasp

With Path-Relinking. Tech. rep., ATT Labs Research Technical Report, Florham Park, NJ 07932.

Martins, S. L., Pardalos, P. M., Resende, M. G., and Ribeiro, C. C. (1999). Greedy

Randomized Adaptive Search Procedures For The Steiner ProblemIn Graphs. (pp. 237-261).

American Mathematical Society.

Medina, A., Lakhina, A., Matta, I., and Byers, J. (2001). BRITE: An Approach to Universal

Topology Generation. Proceedings of the Ninth International Symposium in Modeling, Analysis

and Simulation of Computer and Telecommunication Systems (pp. 346--). Washington, DC,

USA: IEEE Computer Society.

Medina, A., Lakhina, A., Matta, I., and Byers, J. (2001). BRITE: Universal Topology

Generation from a User''s Perspective. Boston, MA, USA: Boston University.

Oliveira, C. A. (2004). Optimization problems in telecommunications and the internet.

Gainesville, FL, USA: University of Florida.

Paquete, L., and Stützle, T. (2006). A study of stochastic local search algorithms for the

biobjective QAP with correlated flow matrices. European Journal of Operational Research, 943-

959.

Ravikumar, C., and Bajpai, R. (1998). Source-based delay-bounded multicasting in multimedia

networks. Computer Communications, 21(2), 126-132.

Resende, M. G., and Pardalos, M. P. (2006). Handbook of Optimization in Telecommunications

(1 ed.). (M. G. Resende, and M. P. Pardalos, Eds.) Springer.

Resende, M., and Ribeiro, C. (2010). Greedy Randomized Adaptive Search Procedures:

Advances, Hybridizations, and Applications. In: M. Gendreau, and J.-Y. Potvin (Eds.), Handbook

of Metaheuristics (Vol. 146, pp. 283-319). Springer US.

Takahashi, H., and Matsuyama, A. (1980). An approximate solution for the Steiner problem in

graphs. Math Japonica, 24(6), 573-577.

1914

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Wang, C.-F., Liang, C.-T., and Jan, R.-H. (June de 2002). Heuristic algorithms for packing of

multiple-group multicasting. Comput. Oper. Res., 29, 905-924.

Waxman, B. M. (1988). Routing of Multipoint Connections. IEEE Journal of Selected Areas in

Communications, 6(9), 1617-1622.

Wu, Z. (2005). Performance modeling of multicast groups for multiplayer games in peer-to-peer

networks. Distributed Simulation and Real-Time Applications, 2005. DS-RT 2005 Proceedings.

Ninth IEEE International Symposium on, (pp. 105-112).

Xu, Y. (2011). Metaheuristic Approaches for QoS Multicast Routing Problems. Ph.D.

dissertation, University of Nottingham.

Zitzler, E., and Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A Comparative Case

Study and the Strength Pareto Approach. Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach.

Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C. M., and Grunert da Fonseca, V. (2002).

{Why Quality Assessment Of Multiobjective Optimizers Is Difficult}. Genetic and Evolutionary

Computation Conference {(GECCO 2002)} (pp. 666-674). New York, NY, USA: Morgan

Kaufmann Publishers.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). {SPEA2: Improving the Strength Pareto

Evolutionary Algorithm}. TIK Report, Computer Engineering and Networks Laboratory (TIK),

ETH Zurich, Zurich, Switzerland.

1915

