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ABSTRACT 

This paper addresses the Multicast Packing Problem under a bi-objective viewpoint. 

Given a set of multicast groups in a network, the problem considered here consists in creating 

multicast trees, one for each group, and accommodating them in a network. Two objectives are 

considered simultaneously: minimizing installation cost and maximizing residual capacity. Three 

metaheuristic approaches are proposed to tackle the problem based on Greedy Randomized 

Adaptive Search Procedure, Non-dominated Sorting Genetic Algorithm 2 and Strength Pareto 

Evolutionary Algorithm 2. Operators to create, recombine and mutate solutions are proposed. 

Results of a computational experiment on eighty-nine instances are reported.  

KEYWORDS. Multicast packing, Multiobjective optimization, Network optimization.  

Main area: Metaheuristics. 
 

1. Introduction 

Nowadays, a lot of applications in telecommunications run simultaneously in the 
Internet. Some examples are Internet TV, video-conferencing, on-line games (Wu, 2005) and 
software delivering (Han and Shahmehri, 2000), among others. These applications share a 
common interest: an efficient away for point-to-multipoint communication from a source to 
multiple destination nodes. Basically, there are two ways to establish connections between a 
source and a group of destination nodes: unicast and multicast. Unicast is the simplest way to 
connect, but it comes at a price. The main problems are related to sending several copies of a 
package in the same arc of the network (considering multiple destinations). In the multicast 
technique such limitations are dealt with the sharing of packages reducing the number of copies. 
Multicast transmission plays an important role in the utilization of network resources. It must 
create a route to send packages from a source to destinations. There are many ways to connect 
nodes regarding multicast transmission, such as Steiner trees, center based trees and ring based 
routing (Oliveira, 2004). A comparison between the ring based routing and the Steiner tree 
approaches indicates that more arcs are needed in the former than in the latter to establish a 
multicast connection (Medina et al., 2001). The center based tree approach has an additional 
problem as it is necessary to find a center in the network and it should be near to destination 
nodes.  
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The problem called multicast routing problem considers one multicast group only. It has 
been addressed with one (Resende and Pardalos, 2006) or multiple criteria (Cui et al., 2003)  and  
(Xu, 2011). The installation cost is the criterion investigated by Resende and Pardalos (2006). 
Four objectives are considered by Cui et al. (2003): end-to-end delay; link utilization; packet lost; 
delay jitter. The idea is to create a multicast tree with QoS (Quality of Service) requirements. Xu 
(2011) investigates the problem with five objectives: tree cost; maximal end-to-end delay; delay 
jitter; average delay and link utilization.  

When more than one multicast group has to be configured simultaneously in a network, 
the problem is called Multicast Packing Problem (MPP).  In this problem, one multicast tree must 

be assigned to each multicast group k  K. The MPP was investigated by (Chen et al., 2000) with 
the objective of minimizing the network congestion. Lee and Cho (2004) investigated the 
maximization of the residual capacity. Kang et al.(2009) consider the optimization of the cost to 
configure a finite number of multicast groups in a network. Other authors have also considered the 
problem with the objective of cost minimization (Jia and Wang, 1997; Low and Wang, 1999; 
Wang et al., 2002).  

The MPP has not been studied under a multi-objective viewpoint. In (Chen, Gunluk, & 
Yener, 2000) the authors, clearly, try to consider congestion (Among all edges in the netwok, 
consider the edge with the most load of traffic over it as the congestion of the network) and cost, 
but the latter is considered as a penalty added to the objective function.  Kang et al. (2009) 
consider the problem of optimizing the cost with a hop-constraint as a QoS measure. 

In this paper, Steiner trees are used to represent solutions. The MPP is considered with 

two objectives that are treated with equal importance. The objectives are: cost and residual 

capacity (Lee and Cho, 2004). The objective is to minimize the installation cost and maximize the 

residual capacity. These objectives represent a trade-off since the minimization of the installation 

directs solution to using few arcs, increasing the congestion. On the other hand, the maximization 

of the residual capacity may increase the cost. 
Three algorithms, Greedy Randomized Adaptive Search Procedure (GRASP) proposed 

by Feo and Resende (1995), Non-dominated Sorting Genetic Algorithm 2 (NSGA2) proposed by 
Deb et.al. (2002) and Strength Pareto Evolutionary Algorithm 2(SPEA2) proposed by (Zitzler, 
Laumanns, & Thiele, 2001), are presented for the MPP. To create these algorithms several 
operators are proposed: two operators to create initial solutions; one recombination operator and 
one mutation operator; one neighborhood and one local search procedure based on Pareto Local 
Search (PLS) (Paquete and Stützle, 2006). Eighty-nine instances were created to test the proposed 
algorithms. These algorithms were compared based on the hypervolume quality indicator (IH) 
proposed in (Zitzler and Thiele, 1999). The Mann-Whitney’s test was used (Conover, 1980). 

Section II presents the problem formulation considering a mathematical model based on 
multi-objective optimization. Section III presents the solution representation and the algorithms. 
Section IV presents the experimental results. Finally, Section V presents conclusions. 

  

2. Problem Formulation 

Given a graph G=(V,E), where V represents the set of vertexes and E the set of edges, 

two values are defined for each e E: the cost of using edge e in a solution, c(e), and the 
maximum traffic supported  by e, called capacity of e, b(e). Consider K a set of multicast groups 
that must be accommodated simultaneously in the network represented by G. For each multicast 

group k  K, sk is the source node, Dk is the set of destination nodes and tk is the traffic 
requirement of the k-th multicast group. The traffic requirement of a group is defined as the 
minimum capacity required of an edge of that group. A tree must be defined for each multicast 

group, where decision variable 1k

ex  if edge e is in the k-th multicast tree, otherwise .0k

ex  An 

edge e can be in more than one multicast tree.  An MPP solution is a set  ||21 ,...,, KTTTT  of 

multicast trees. Consider TE  the set of edges used by the |K| trees of an MPP solution, the 

problem consists in optimizing simultaneously the two objectives presented in equations 1 and 3. 
The first objective, presented in equation 1, is to minimize the installation cost. The second 
objective consists in maximizing the minimal residual capacity of an edge in ET. The residual 
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capacity of TEe  is defined as in Lee and Cho(2004) and presented in equation 2. The second 

objective function is to maximize the minimum residual capacity as presented in equation 3. The 
minimal residual capacity represents a bottleneck in the network. It can make the tree increase 
with try to maximize its value, considering the sharing the congestion of the network is made by 
using more edges increasing the cost. In this case, it is important maximize this value. The two 
objectives are considered simultaneously. The capacity of each edge cannot be violated. This 
constraint is expressed in equation 4. 
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Let Vk  be the set of vertices of the k-th multicast tree.  A bi-objective mathematical 

model for the MPP can be defined as: 
 
min  f1, max f2 
 
subject to 
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            1,0k

ex  

3. Algorithms 

This section presents the proposed algorithms, their operators and methods. First, the 

solution representation is described in Section 3.1. Then, the GRASP algorithm and the 

evolutionary approaches are presented in Sections 3.2 and 3.3, respectively. 

3.1 Solution Representation 

Basically, an MPP solution consists of a list of Steiner Trees, one for each multicast 
group. Each Steiner Tree is represented by a list of edges. Then, the solution representation 
consists of a list of lists of edges.  

Two heuristics were implemented to create Steiner trees. These heuristics are modified 
versions of others presented previously to the Steiner Tree Problem.  

The first heuristic is a randomized version of the algorithm proposed in (Takahashi and 
Matsuyama, 1980), named RandomTM. The modified heuristics is presented in algorithm 1 and is 
used to create the Steiner tree corresponding to the k-th multicast group. In (Takahashi and 
Matsuyama, 1980) the algorithm starts adding a terminal node to an empty tree. Then, another 
terminal is added based on the shortest path between it and a node in the tree. In the version 
proposed in this paper each terminal node to be added to the tree is chosen at random. The set of 
terminal nodes of the k-th multicast group Dk is created in line 1 of algorithm 1.  The source node 
of the k-th multicast group, sk, is set in line 2. The first node added to the tree is the source (line 3). 
Then, a new node is selected at random from Dk. It is linked to the source by the shortest path 
between them (lines 4 and 5). The shortest path is obtained with Dijkstra’s algorithm (Dijkstra, 

1906



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

1956). The remaining destination nodes are added to the tree in the main loop between lines 8 and 
13. One node in the tree and one node out of the tree (line 9) are chosen randomly and the shortest 
path between them is computed (line 10). This process is repeated until all destination nodes are in 
the tree. The inclusion of a path in the tree may create cycles. Therefore procedure 
nodeNotInSolution( ) is called to avoid the creation of cycles.  

 

Algorithm 1 – RandomTM 

Input: MulticastGroup k, Graph G 

Output: SteinerTree S 

1: Dk  DestinationNodes (k) 

2: sk  Source (k) 

3: S   sk 

4: d   randNode (Dk) 

5: Path  Dijkstra (d, sk ) 

6: S S  { NodeNotInSolution(path) } 

7: remove(d, Dk) 

8: while size (Dk) > 0 

9           d   randNode(Dk) 

10:        path  Dijkstra ( d, randNode(S) ) 

11:        S  S { NodeNotInSolution(path) } 

12:       remove (d, Dk) 

13: end while 

 
The second heuristic is based on Kruskal’s algorithm to generate minimum spanning 

trees (Kruskal, 1956). It will be referred to as algorithm 2 in this paper. The goal is to create 

multicast trees that contribute to maximize the minimal residual capacity. Basically, it works like 

Kruskal’s algorithm, but in this version a restricted candidate list (Martins et al., 1999) is 

implemented from where the next edge to be added to the tree is picked. The edges are sorted in 

ascending order of capacities in list L. One edge is selected at random from the 30% first ones in 

list L. The selected edge is added to the tree if it does not induce a cycle. The procedure continues 

until a tree is built with all terminal nodes of the k-th multicast group. The trees created by each 

algorithm are submitted to a procedure to eliminate leaves that are not terminal nodes. 

 

Algorithm 2 – Algorithm based on Minimum Spanning Trees 

Input Graph G(V,E), MultcastGroup k 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

DisjointSet DS   AddNodes(V) 

L  sort (E) 

while L      

pos  randNumber (0, size(L) * 0.3 ) 

e  L[pos] 

       if  DS.union(e.x , e.y) then //if a cycle is not created 

    S  S  {e} 

       end if 

remove(e, L) 

end while 

 

3.2 GRASP 
The construction phase of the GRASP algorithm is presented in Algorithm 3. The 

algorithm has four input parameters: a graph G representing the network; the set of multicast 
groups, K; a reference for a heuristics (algorithm 1 or 2); the length of the restricted candidate list, 
NRCL. 

The algorithm contains a main loop in which |K| trees are created (one for each multicast 
group k ∈ K). The loop starts by choosing a multicast group k at random (line 2). All edges from G 
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that do not support the traffic required by the k-th multicast group, tk , are removed (line 3).  A 
restricted candidate list RCL is created to the k-th multicast group, heuristic h (algorithm 1 or 
algorithm 2) in line 4. The RCL contains NRCL Steiner trees. A multicast tree is chosen randomly 
for k (line 5). This multicast tree is added to the MPP solution (line 6). After, the graph is restored 
in line 7(the edges removed are reinserted). The loop iterates until a Steiner tree is associated with 
each multicast group. 

 

Algorithm 3 – Solution creator based on Restricted Candidate List. 

Input Graph G, MulticastGroups K, Heuristic h, NRCL 

Output MPPSolution T 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

While |K| > 0 do 

k  chooseGroupRAndomly (K) 

remove (k, G) 

RCL  creatList (h,k, NRCL) 

SteinerTree Tk   chooseComponent (RCL) 

T  T  Tk  
restore(G) 

K   K – {k} 

end while 

 
 

Algorithm 4 – Local Search Operator for the MPP 

Input: MPPSolution T 

Output: Non-dominated Archive A 

 1: TAA   

 2: T.visited   false 

 3: while T’  A | T’.visited = false do 

 4:   for T’  Neighborhood(T’) do 

 5:        if  not (S, S  A)|S  T” then 

 6:          T”.visited = false   

 7:             for S  A do 

 8:                  if T”   S then 

 9:                    AA-S 

10:                 end if 

11:            end for 

12:           AAT”  

13:       end if 

14:   end for 

15:       T’.visited  true 

16: end while 

 

The local search operator used in the GRASP algorithm is based on the PLS algorithm 

proposed by Paquete and Stützle (2006). The neighborhood structure consists of the systematic 

substitution of each multicast tree corresponding to a group in the input MPP solution. For 

example, given an MPP instance with five multicast groups, for each multicast group k a 

multicast tree is replaced by a new multicast tree relative to k. The number of neighbors is equal 

to the number of multicast groups. . For example, given an MPP solution T = {T1,…,T|K|}, a 

neighbor T’ = {T’1,…,T’|K|},  of T consists of a solution where i, 1  i  |K|, such that T’i ≠ Ti and 

j, j ≠ i, 1  j  |K|, T’j= Tj. 

The local search procedure receives solution I as input parameter and adds it to archive 

A, the output of the algorithm. Solution I is marked “false”, meaning that it has not been 

explored. The main loop of the local search is started. While there is, at least, one solution I
′
 not 
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explored in A (line 3), each of its neighbors, I”, is generated (line 4). If I” is not dominated by 

any solution in A (line 5), the algorithm checks for solutions in A dominated by I” and remove 

them, if they exist (lines 7 and 8).  I
′′
 is added to A (line 12). Finally, the individual I

′
 is marked as 

explored (line 15). The algorithm returns the set of non-dominated solutions A. 

The GRASP is shown in algorithm 5. Variable h is set to 0 or 1, whether algorithm 1 or 

2, respectively, is assigned to the construction procedure shown in algorithm 4. In the main loop 

an MPP solution S is created with heuristic h (line 5) – algorithm 1 or algorithm 2. Local search 

is applied to S (line 6) returning archive At of non-dominated solutions generated in the t-th 

GRASP iteration. The algorithm maintains an archive Q of non-dominated solutions generated 

along the GRASP iterations. Each iteration Q is updated to maintain only non-dominated 

solutions (line 5). The algorithm changes the reference of the heuristic used to construct a new 

solution (line 6). This process is repeated until the algorithm performs tmax iterations and the 

algorithm returns Q. 

 

Algorithm 5 – GRASP 

 Input: tmax 

Output: NonDominatedSet Q 

1: t  0; h  0 

2: While (t < tmax) 

3:     S  CreateSolution(h)  

4:     At  LocalSearch(S) 

5:     Q  Q  At 

6:     h  not h 

7: end_while 

8: return(Q) 

3.3 NSGA2 and SPEA2 

This section presents the operators used in algorithms NSGA2 and SPEA2. Those were 

implemented following the directions given in the works of Deb et al. (2002) and Zitzler et al. 

(2002), respectively. 

The procedure presented in Algorithm 6 was used to create MPP solutions. The input 

data are: a graph G, the set K of multicast groups and a reference for a constructive heuristics 

(algorithms 1 or 2). Algorithm 6 builds iteratively a tree for each multicast group in K. It starts 

choosing a group k ∈ K at random and removing from G all edges that do not support the 

required traffic (line 3). A construction heuristic is randomly chosen and a multicast tree is 

created (lines 4 and 5). This process is repeated until the trees of all multicast groups are created. 

 

Algorithm 6 – Solution creator 

Input: Graph G(V,E) , MulticastGroups K, Heuristic H 

Output: MPPSolution T 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

While |K| > 0 d 

k   chooseGroupRAndomly (K) 

remove (k, G) 

h   chooseHeuristicRandomly (H) 

Tk   createSteinerTreeh(h,k) 

T  T   Tk 

restore(G) 

K   K – {k} 

end while  

 

The recombination operator for the MPP solutions uses the recombination procedure for 

Steiner tree presented in Algorithm 7 called STRecomb. It is a modified version of the algorithm 

proposed by Ravikumar and Bajpai (1998). Algorithm 7 recombines two Steiner trees 
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corresponding to the k-th multicast group of two MPP solutions T1 and T2 and returns Steiner 

tree T[k]. 

 

Algorithm 7 – STRecomb Algorithm 8 - MPPRecomb 

Input: SteinerTrees T1[k], T2[k]  

Output: SteinerTree T 

Input: S1, S2, |K| 

Output: S 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

E   common_edges(T1[k], T2[k]) 

if isEmpty (E) then 

      T   lowestCost (T1[k], T2[k]) 

else 

       if ConnectComponent(E) 

   T   E 

        else 

N   DestinationNodes (k) 

for n ∈ N do 

if n NotIn(T) then 

p   getNodeRandomly (T) 

path  Dijkstra(p,n) 

T  T  {path} 

end if 

end for 

end if 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

pos  random(0,|K|) 

for i  0; i < pos; i++  do 

S[i]  STrecomb(S1[i],S2[i]) 

end for 

for (i  pos; i < |K|; i++)  do 

S[i]  S2[i] 

end for 

 
The first step of algorithm 7 computes the set of common edges in Steiner trees T1[k] 

and T2[k]. If this set is empty (line 2), the Steiner tree with the lowest cost is set to T[k] (line 3).  
Function ConnectComponents( ) checks whether set E corresponds to a connected graph (line 4). 
If it is connected, then T is the tree corresponding to E. Otherwise, edges that link connected 
components are added to this set. After, if there are, at least, two disjoint sets, they are joined using 
the shortest path between them. The path is computed using Dijkstra’s algorithm.  

The loop from line 9 to 15 is executed to include destination nodes in group k that are 
not in tree T. The isolated destination node is added to T by the shortest path between it and a 
random node in T. 

Algorithm 8 is used to recombine MPP solutions. It receives two MPP solutions, S1 and 
S2, and the number of multicast groups K. The output is MPP solution S. Initially, a cut point, pos, 
is defined (line 1). The trees corresponding to MPP Solutions T1 and T2 between positions 0 and 
pos-1 are recombined with algorithm 7 (line 3). The other Steiner trees of the offspring are copied 
from T2 (lines 5 to 7). 
 

Mutation 

The mutation operator uses one of the two heuristics (algorithm 1 or 2) to alter a given 

MPP solution, S. A multicast group k is randomly chosen from S. A tree associated to k is 

removed from S and a construction heuristic is randomly chosen to generate a new Steiner tree to 

the k-th component of S. 
 

4. Experiments 
 
The experiments were performed in an Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 

using the Ubuntu operational system. All codes were implemented in C++. The process to create 
the instances for the experiments incorporated the Waxman’s model (Waxman, 1988) and the 
Framework BRITE (Medina et al., 2001). Instances are classified according to number of nodes 
and number of multicast groups. Instances were created with 30, 60 and 120 nodes and 5, 10, 15, 
20 and 25 multicast groups. Other characteristics of those instances are presented in Table I, where 
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column nodes presents the number of nodes, column Node/group shows the percentage of nodes 
considered for each multicast group. 

 

Nodes(N) Groups Node/Group Capacity Edges(E) 
30 5,10,15,20,25 20-30%  15 a 85 2N 
60 5,10,15,20,25 15-30% 25 a 85 2N 

120 5,10,15,20,25 10-30% 35 a 85 2N 
Table 1 – Instances characteristics 

The approximation sets produced by each approach were compared with the 
hypervolume indicator (IH). The Mann-Whitney’s test was applied to the results.  

The parameters of NSGA2 are:  population size = 150, recombination rate = 0.5 and 
mutation rate =0.3. The parameters of SPEA2 are: population size = 150, archive size = 20, 
recombination rate = 0.5 and mutation rate 0.1. The size of the RCL in the GRASP algorithm was 
0.3n, where n denotes the number of destination nodes. 

 

Instance 
HI   Instance 

HI   Instance 
HI  

B030_1 1  B060_1 1  B120_1 1 

B030_2 1  B060_2 1  B120_2 1 

B030_3 1  B060_3 1  B120_3 1 

B030_4 1  B060_4 1  B120_4 1 

B030_5 1  B060_5 1  B120_5 1 

B030_6 1  B060_6 1  B120_6 1 

B030_7 0,9999977  B060_7 1  B120_7 1 

B030_8 0,9999974  B060_8 1  B120_8 1 

B030_9 1  B060_9 1  B120_9 1 

B030_10 1  B060_10 1  B120_10 1 

B030_11 1  B060_11 1  B120_11 1 

B030_12 1  B060_12 1  B120_12 1 

B030_13 1  B060_13 1  B120_13 1 

B030_14 1  B060_14 1  B120_14 1 

B030_15 0,9999997  B060_15 1  B120_15 1 

B030_16 0,9999384  B060_16 1  B120_16 1 

B030_17 3,75E-011  B060_17 1  B120_17 1 

B030_18 1  B060_18 1  B120_18 1 

B030_19 2,55E-007  B060_19 0,1403482  B120_19 1 

B030_20 1  B060_20 1  B120_20 1 

B030_21 0,9879794  B060_21 0,00170355  B120_21 6,06E-007 

B030_22 1,27E-014  B060_22 1  B120_22 1 

B030_23 1,50E-015  B060_23 1  B120_23 0,9999999 

B030_24 1  B060_24 1  B120_24 1 

B030_25 2,78E-010  B060_25 5,76E-007  B120_25 2,61E-006 

B030_26 8,37E-015  B060_26 2,82E-033  B120_26 1 

B030_27 0,2566827  B060_27 0,999925  B120_27 0,892516 

B030_28 1,72E-030  B060_28 1  B120_28 1 

B030_29 6,44E-024  B060_29 0,9999999  B120_29 1 

- -  B060_30 9,22E-005  B120_30 1,12E-010 

Table 2 - Comparison between NSGA2 and GRASP 

The processing time was fixed in 60s, 120s and 300s for instances with 30, 60 and 120 
nodes, respectively. One hundred independent executions of each algorithm were performed for 
each instance. Tables 2-3 present the p-values returned by the Mann-Whitney’s test for pairwise 
comparisons. 
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Table 2 shows the comparison between GRASP and NSGA2. The underlined values 
indicate that the NSGA2 produced approximation sets better than the ones produced by GRASP. 
Bold values indicate the opposite, i.e., GRASP is better than NSGA2. Considering significance 
level 0.01, the results show that the NSGA2 outperforms the GRASP in 74 instances. 

 

Instance HI  
 

Instance HI  
 

Instance HI  

B030_1 5,91E-030 
 

B060_1 1,32E-034 
 

B120_1 1,28E-034 

B030_2 2,01E-034 
 

B060_2 1,44E-034 
 

B120_2 1,28E-034 

B030_3 2,63E-034 
 

B060_3 1,36E-034 
 

B120_3 1,28E-034 

B030_4 1,28E-034 
 

B060_4 1,28E-034 
 

B120_4 1,28E-034 

B030_5 1,33E-032 
 

B060_5 1,32E-034 
 

B120_5 1,81E-033 

B030_6 2,60E-032 
 

B060_6 1,28E-034 
 

B120_6 1,28E-034 

B030_7 3,74E-015 
 

B060_7 6,42E-030 
 

B120_7 1,28E-034 

B030_8 1,19E-005 
 

B060_8 1,49E-034 
 

B120_8 6,33E-028 

B030_9 6,43E-031 
 

B060_9 1,28E-034 
 

B120_9 1,28E-034 

B030_10 6,14E-025 
 

B060_10 1,28E-034 
 

B120_10 1,28E-034 

B030_11 8,53E-031 
 

B060_11 1,36E-034 
 

B120_11 1,28E-034 

B030_12 1,28E-034 
 

B060_12 1,28E-034 
 

B120_12 1,28E-034 

B030_13 1,68E-034 
 

B060_13 1,89E-034 
 

B120_13 5,28E-023 

B030_14 2,55E-014 
 

B060_14 6,79E-015 
 

B120_14 1,34E-031 

B030_15 0,00542905 
 

B060_15 3,44E-034 
 

B120_15 1,78E-034 

B030_16 5,25E-005 
 

B060_16 8,16E-034 
 

B120_16 4,44E-022 

B030_17 1 
 

B060_17 7,03E-034 
 

B120_17 1,28E-034 

B030_18 8,73E-032 
 

B060_18 4,69E-008 
 

B120_18 2,79E-034 

B030_19 1 
 

B060_19 0,9996539 
 

B120_19 1,54E-032 

B030_20 1,48E-024 
 

B060_20 0,1201878 
 

B120_20 5,22E-007 

B030_21 0,00061597 
 

B060_21 0,9861926 
 

B120_21 1 

B030_22 1 
 

B060_22 3,65E-034 
 

B120_22 2,79E-034 

B030_23 1 
 

B060_23 2,35E-015 
 

B120_23 0,9999906 

B030_24 0,00093021 
 

B060_24 2,10E-033 
 

B120_24 5,03E-023 

B030_25 1 
 

B060_25 0,9999996 
 

B120_25 1 

B030_26 1 
 

B060_26 1 
 

B120_26 9,24E-032 

B030_27 0,9684295 
 

B060_27 0,5403838 
 

B120_27 1 

B030_28 1 
 

B060_28 1,64E-026 
 

B120_28 5,25E-005 

B030_29 1 
 

B060_29 0,0041443 
 

B120_29 1,36E-034 

   
B060_30 0,9999999 

 
B120_30 1 

Table 3 – Comparison between SPEA2 and GRASP 
 
Table 3 shows the comparison between SPEA2 and GRASP. Bold values indicate that 

the SPEA2 has approximation sets better than the GRASP. Underlined values indicate the 
opposite, GRASP has better approximation sets. In the same way of the NSG2, the SPEA2 
outperforms the GRASP algorithm in almost all instances. The SPEA2 outperforms the GRASP in 
70 instances. 

Table 4 shows the comparisons between the NSGA2 and the SPEA2 algorithms 
presented for the MPP, bold values indicates that SPEA2 is better than NSGA2, underlined values 
indicate the opposite, i.e., NSGA2 is better than SPEA2 . The results on instances with 30 nodes 
do not support conclusions of superior performance of one of the two tested algorithms. 
Nevertheless, NSGA2 exhibits better performance than NSGA2 on groups of instances with 60 
and 120 nodes. This conclusion is supported by the fact that the SPEA2 does not outperform the 
NSGA2 algorithm in any instances including groups of instances with 60 and 120 nodes. On the 
other hand, the NSGA2 outperforms the SPEA2 algorithm 32 instances. 

The evolutionary algorithms outperform the GRASP algorithm in the previous 
comparisons. Therefore, a comparison between them can indicate which is better. The table 4 
illustrates the comparison. For instances with size equal 30 nodes there was not an algorithm 
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outperforming other algorithm, but for instances with size equal 60 and 120 nodes the NSGA2 
algorithm outperforms the SPEA2 in most of instances. 

 

Instance HI  
 

Instance HI  
 

Instance HI  

B030_1 0,9254646 
 

B060_1 0,9988946 
 

B120_1 1 

B030_2 0,5233811 
 

B060_2 0,8601958 
 

B120_2 0,6167178 

B030_3 0,6204433 
 

B060_3 0,9219611 
 

B120_3 0,2622244 

B030_4 0,7824996 
 

B060_4 0,9997759 
 

B120_4 0,9810372 

B030_5 0,9925508 
 

B060_5 0,9376903 
 

B120_5 0,8478945 

B030_6 0,7903224 
 

B060_6 0,2694384 
 

B120_6 0,3519924 

B030_7 0,03577276 
 

B060_7 1 
 

B120_7 0,07282936 

B030_8 0,4936643 
 

B060_8 0,9999526 
 

B120_8 0,9996251 

B030_9 0,06661799 
 

B060_9 0,9456523 
 

B120_9 0,9999665 

B030_10 0,3767698 
 

B060_10 0,9856672 
 

B120_10 0,141989 

B030_11 0,09871858 
 

B060_11 0,470297 
 

B120_11 0,9782803 

B030_12 0,8841593 
 

B060_12 0,4153529 
 

B120_12 0,6443734 

B030_13 0,700747 
 

B060_13 0,299253 
 

B120_13 0,9805803 

B030_14 0,9945328 
 

B060_14 0,9898295 
 

B120_14 0,9961169 

B030_15 0,8655574 
 

B060_15 0,9890795 
 

B120_15 0,9999859 

B030_16 0,4441345 
 

B060_16 0,9719017 
 

B120_16 0,9802316 

B030_17 0,1555198 
 

B060_17 0,8812738 
 

B120_17 0,8094727 

B030_18 0,4470316 
 

B060_18 0,9868516 
 

B120_18 0,9898295 

B030_19 0,9240779 
 

B060_19 0,9938045 
 

B120_19 1 

B030_20 0,7986646 
 

B060_20 0,9999981 
 

B120_20 0,9998594 

B030_21 0,1299976 
 

B060_21 0,4239471 
 

B120_21 1 

B030_22 0,4153528 
 

B060_22 0,1287099 
 

B120_22 0,9806954 

B030_23 0,6653568 
 

B060_23 0,9990225 
 

B120_23 1 

B030_24 0,996838 
 

B060_24 0,9991368 
 

B120_24 0,9999998 

B030_25 0,9437415 
 

B060_25 0,8000353 
 

B120_25 1 

B030_26 0,9581777 
 

B060_26 0,2284346 
 

B120_26 0,9980993 

B030_27 0,8348949 
 

B060_27 0,999964 
 

B120_27 1 

B030_28 0,7828607 
 

B060_28 0,6167178 
 

B120_28 1 

B030_29 0,6352308 
 

B060_29 0,9947581 
 

B120_29 0,07282936 

   
B060_30 0,8995716 

 
B120_30 1 

Table 4 - Comparison between NSGA2 and SPEA2. 

 

5. Conclusions 
 
This paper presented a study on the Multicast Packing Problem under the viewpoint of 

multi-objective optimization. A mathematical formulation was presented, incorporating two 
important requirements in multicast trees construction: cost and residual capacity. An NSGA2, a 
SPEA2 and a GRASP algorithm were proposed in this paper for the MPP. Eighty-nine instances 
were created for the computational experiments. They were compared based on the results of the 
Mann-Whitney’s test performed on the values of the hypervolume indicator of the approximation 
sets generated by the tested algorithms. There is statistical evidence that NSGA2 outperformed the 
other algorithms on the set of instances considered in the experiment. 
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