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Abstract

We consider a strategic bidding problem under uncertainty in a wholesale energy
market, where the economic remuneration of each generator depends on the ability of its
own management to submit price and quantity bids. We present a bilevel formulation
for the problem and propose semidefinite programming (SDP) relaxations for it. The
SDP relaxations are compared in order to measure the trade-off between their strength
and the computational effort required to solve them. Numerical results are shown for
case studies with configurations derived from the Brazilian system.
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1 Introduction

In the strategic pricing problem in electricity markets, generators compete for contracts for
power sales to distribution companies. They make their price offers for energy production
and then are loaded in order of increasing unit price until demand is met. All generators
dispatched receive the most expensive unit price charged among them, which corresponds
to the marginal cost of short-term or spot price of the system (Hunt(2003)).

The problem of determining the optimal price bids for a given company that owns one
or more generators is a non-convex problem that may be modeled as a bilevel program,
where the leader represents the company that aims to maximize its expected profit, while
the follower represents the system operator, that aims to minimize the total cost of the
energy production.

Mixed integer linear programming (MILP) reformulations for this strategic bidding
problem were proposed in Fampa (2008) and Pereira (2005). The MILP formulation pre-
sented in Fampa (2008) was also applied in Fampa (2012) to obtain the optimal solutions
of some instances derived from the Brazilian power system and then compare them to the
solutions obtained by a genetic algorithm proposed in the paper.

In this paper, we consider the reformulation of the strategic pricing bilevel problem in
electricity markets as a non-convex quadratically constrained quadratic program and inves-
tigate the application of semidefinite relaxations to obtain bounds for the problem. Semidef-
inite programming (SDP) relaxations of non-convex quadratically constrained quadratic
programs (QCQPs) have been studied by a number of researchers, initially inspired by the
seminal works of Lovász (1979), Lovász (1991) and Goemans (1995). The research in this
field is still very active as shown, for example, on the recent works of Anstreicher (2009),
Burer (2008), Fampa (2013), Rendl (2010), Saxena (2010), Saxena (2011) and on the survey
paper of Bao (2011).

Although semidefinite relaxations have been very effective in generating strong bounds
for QCQPs, it is well known that the required computation effort to solve the relaxations
may be considerable, especially when the size of the relaxation becomes too big due to
the inclusion of valid inequalities. The challenge is, therefore, to achieve a good trade-off
between the size of the semidefinite programs and quality of the bounds obtained. Our
goal with the research conducted in this paper is to verify the effect of the addition of valid
inequalities to a basic SDP relaxation of the strategic pricing problem in order to achieve
the best possible trade-off.

This paper is organized as follows: Section 2 presents the mathematical formulations
of the strategic bidding problem under uncertainty as a bilevel program and as a QCQP.
Section 3 presents the general QCQP and discuss semidefinite relaxations for the prob-
lem, starting from a basic and weaker relaxation and then proposing valid inequalities to
strengthen it. Section 4 presents the numerical results comparing the different SDP relax-
ations for the strategic bidding problem. Section 5 concludes the paper.

Notation

In this paper, Rn refers to the n-dimensional Euclidean space, ei ∈ Rn represents the i-th
unit vector, Sn+ is the set of n × n positive semidefinite symmetric matrices, R1+n and
S1+n
+ is used to denote the spaces Rn and Sn+ with an additional 0-th entry or additional

0-th row and column prefixed. Given two symmetric n× n matrices X,Y , we let X • Y =
trace(XTY ) =

∑n
i,j=1XijYij and we use X � 0 to denote that the matrix X is positive

semidefinite.
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2 Strategic Pricing in Electricity Markets

In deregulated electricity markets, generators submit a set of hourly generation prices and
available capacities for the following day. Based on these data and on an hourly load
forecast, the system operator carries out the following economic dispatch at each time step
(Fampa (2008)):

dual variable
Minimizegj

∑
j∈J λjgj ,

subject to
∑

j∈J gj = d, πd
gj ≤ ḡj , πgj j ∈ J,
gj ≥ 0, j ∈ J,

(2.1)

where the input data d, λj and ḡj represent, respectively, load (MWh), price bid ($/MWh)
and generation capacity bid (MWh) of generator j and the variable gj represents the energy
production of generator j (MWh). The optimal value of the dual variable πd is considered
as the system spot price. The profit of each generator j ∈ J , in each time step, corresponds
to (πd − cj)gj , where cj represents its unit operating cost. Note that cj may be different
from λj , its price bid.

The net profit of a generation company E, which may be a utility or an independent
power producer that owns several different generation units, is given by:∑

j∈E
(πd − cj)gj ,

where E is also used to denote the set of indexes associated to the plants belonging to the
company E (E ⊂ J).

In the optimal price bidding problem, company E aims to determine a set of price bids
λE = {λj , j ∈ E} that maximize its total net profit, considering the quantity bid of each
generator of the company fixed as its maximum generation capacity, denoted by ḡ∗j .

The complexity of this problem is increased by the fact that the calculation of πd and gj
in the dispatch problem (2.1) depends on the knowledge of price vectors for all companies,
as well as their generation availability and system load values. However, this information is
not available to any single company at the time of its bid. Therefore, the bidding strategy
has to take into account the uncertainty around these values. An approach used to deal with
the uncertainty on the data of the problem is to define a set of scenarios for the remaining
agent’s behavior and maximize the profit of the company over all scenarios, in a classical
strategic bidding under uncertainty problem. In this case, the bids from generators not
belonging to company E and the load are considered uncertain, and represented by a set
of scenarios indexed by s, which occur with exogenous probabilities {ps, s=1,...,S}. The
bilevel formulation for the problem is given by

MaximizeλE
∑

s∈S ps
∑

j∈E [πsd − cj ]gsj ,
subject to

Minimizegsj
∑

s∈S
∑

j∈E λjg
s
j +

∑
j /∈E λ

∗s
j g

s
j ,

subject to
∑

j∈J g
s
j = ds, s ∈ S,

0 ≤ gsj ≤ ḡ∗j , j ∈ E, s ∈ S,
0 ≤ gsj ≤ ḡ∗sj , j /∈ E, s ∈ S.

(2.2)

The first level of problem (2.2) represents the interest of company E, maximize expected
profits), while the second level represents the interest of the system operator (minimize
operational costs). The company is classified as leader of the bilevel program and controls
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the variables λj , for j ∈ E, while the system operator is classified as follower and controls
the variables gsj for j ∈ J , s ∈ S.

Finally replacing the follower linear program by its optimality conditions we derive the
following non-convex quadratically constrained quadratic program, with a bilinear objective
function and one bilinear constraint.

Maximizeλj ,gsj ,πs
d,π

s
gj

∑
s∈S

ps
∑
j∈E

[πsd − cj ]gsj

subject to∑
j∈J

gsj = ds, s ∈ S,

0 ≤ gsj ≤ ḡ∗j , j ∈ E, s ∈ S,
0 ≤ gsj ≤ ḡ∗sj , j /∈ E, s ∈ S,
πsd − πsgj − λj ≤ 0, j ∈ E, s ∈ S,
πsd − πsgj ≤ λ

∗s
j , j /∈ E, s ∈ S,

πsgj ≥ 0, j ∈ J, s ∈ S,∑
s∈S

(
∑
j∈E

λjg
s
j +

∑
j /∈E

λ∗sj g
s
j − dsπsd +

∑
j∈E

ḡ∗jπ
s
gj +

∑
j /∈E

ḡ∗sj π
s
gj ) = 0.

(2.3)

3 SDP relaxations of quadratically constrained quadratic pro-
grams

A general non-convex Quadratically Constrained Quadratic Program (QCQP) may be for-
mulated as:

(QCQP)



maximize xTQ0x+ 2qT0 x+ r0
subject to xTQjx+ 2qTj x+ rj ≤ 0, j = 1, . . . ,mq

pTj x = vj , j = 1 . . . ,mle

bj ≤ aTj x ≤ cj , j = 1 . . . ,ml1

αTj x ≤ γj , j = 1 . . . ,ml2

βj ≤ δTj x, j = 1 . . . ,ml3

where Qj ∈ Sn, qj ∈ Rn, rj ∈ R, for j = 0, . . . ,mq, pj ∈ Rn, vj ∈ R, for j = 1, . . . ,mle ,
aj ∈ Rn, bj , cj ∈ R, for j = 1, . . . ,ml1 , αj ∈ Rn, γj ∈ R, for j = 1, . . . ,ml2 , δj ∈ Rn,
βj ∈ R, for j = 1, . . . ,ml3 .

A standard approach to derive a convex relaxation of QCQP is to introduce the variable
Y ∈ S1+n

+ in the formulation, obtaining the following lifted reformulation of the problem.

(QCQP’)



maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

pTj x = vj , j = 1 . . . ,mle

bj ≤ aTj x ≤ cj , j = 1, . . . ,ml1

αTj x ≤ γj , j = 1 . . . ,ml2

βj ≤ δTj x, j = 1 . . . ,ml3

Y =

(
1 xT

x xxT

)
,

where Sj =

(
rj qTj
qj Qj

)
, j = 0, . . . ,mq.

The only non-convex constraint in QCQP’ is the last one, which imposes Y to be a
positive semidefinite rank-1 matrix with Y00 = 1. A convex relaxation of QCQP is then
given by the following SDP problem obtained by relaxing the rank-1 constraint.
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(SDP)



maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

pTj x = vj , j = 1 . . . ,mle

bj ≤ aTj x ≤ cj , j = 1, . . . ,ml1

αTj x ≤ γj , j = 1 . . . ,ml2

βj ≤ δTj x, j = 1 . . . ,ml3

Smq+1 • Y = 1,
Y � 0,

where Smq+1 = e0e
T
0 and e0 ∈ R1+n.

Let’s consider now the following relaxation of SDP, which is therefore a relaxation of
QCQP.

(SDPI)


maximize S0 • Y
subject to Sj • Y ≤ 0, j = 1, . . . ,mq

Smq+1 • Y = 1,
Y � 0.

Our goal in this work is to add different sets of valid inequalities to this initial SDP
relaxation and analyze which ones lead to an improvement on the bounds given by the
relaxation that compensates the increase on the computational effort required to solve it.
In the remainder of this section, we present the valid inequalities used in our computational
experiments.

Bounding SDPI

In order to guarantee the boundedness of SDPI , we impose the following upper bounds to
the diagonal of Y

Yii ≤ max{l2i , u2i }, i = 1, . . . , n, (3.1)

where li and ui are respectively, lower and upper bounds for xi. We also include in SDPI
the nonnegative constraints on xi, given by

Y0j ≥ 0, j = 1, . . . , n, (3.2)

Adding the linear constraints

Using the idea introduced in Sherali (1995) we multiply the linear constraints among each
other and also by each variable of the problem generating valid quadratic constraints to
strengthen the identity between Yij and xixj for i, j = 1, . . . , n.

Considering the first type of linear inequality constraints in QCQP, given by

b ≤ aTx ≤ c, (3.3)

we derive the valid convex quadratic inequality

(aTx− b)(aTx− c) ≤ 0⇔ xTaaTx− (b+ c)aTx+ bc ≤ 0. (3.4)

Considering now the second type of inequality constraints:

αTx ≤ γ (3.5)

we derive the valid quadratic inequalities

(αTx− γ)xi ≤ 0 ∀xi ≥ 0. (3.6)
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For the third type of linear inequality constraint

δTx ≥ β, (3.7)

we derive the valid quadratic inequalities

(δTx− β)xi ≥ 0 ∀xi ≥ 0. (3.8)

Finally, for the equalities constraints

pTx = v (3.9)

we derive the valid quadratic inequalities

(pTx− v)xi = 0,

for each variable xi in the problem and include in the relaxation

pTx = v, and (pTx− v)xi = 0, ∀i = 1, . . . , n. (3.10)

Adding RLT inequalities

To strengthen the SDP relaxation, we also consider the well known Reformulation-Linearization
Technique (RLT), McCormick (1976), Sherali (1999) and Sherali (1995). Specifically, the
following valid bilinear inequalities

(xi − ui)(xj − lj) ≤ 0
(xi − li)(xj − uj) ≤ 0
(xi − li)(xj − lj) ≥ 0

(ui − xi)(uj − xj) ≥ 0

generate the well known RLT inequalities, given by

Yij − ljxi − uixj + ljui ≤ 0
Yij − lixj − ujxi + liuj ≤ 0
Yij − ljxi − lixj + lilj ≥ 0

Yij − ujxi − uixj + uiuj ≥ 0.

(3.11)

Naturally, the bound constraints (3.1) are contained in the set of RLT inequalities.

We note that all valid quadratic inequalities are introduced in the SDP relaxation as

a linear constraint on Y , given by S • Y ≤ 0, where S =

(
r qT

q Q

)
, with properly

chosen vectors q and r and submatrix Q. For the convex quadratic inequalities (3.4), for

example, we have S =

(
bc −1

2(b+ c)aT

−1
2(b+ c)a aaT

)
. Furthermore, we note in this case,

that since Q = aaT is positive semidefinite, the projected solution x contained in the first
row and column of the semidefinite relaxation solution Y , necessarily satisfies the quadratic
constraint (3.4). Indeed, considering X as the submatrix of Y obtained when we eliminate
the first row and column of Y , i.e.,

Y =

(
1 xT

x X

)
, (3.12)

then, since Y � 0, we have that X−xxT � 0. Therefore, Q � 0 implies that Q•(X−xxT ) ≥
0 and xTQx+ 2qTx+ r ≤ Q •X + 2qTx+ r = S • Y ≤ 0.
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4 Numerical Results

Considering the QCQP formulation (2.3) of the strategic pricing problem in energy markets,
we have applied to it the SDP relaxations discussed in Section 3. The first relaxation con-
sidered, denoted in the remainder of this section by SDPI1 is the weaker one, corresponding
to the initial relaxation SDPI with only the bounding constraints (3.1, 3.2) included. Then
we add each set of valid inequalities to the relaxation, one by one, in the following order. We
add the original linear constraints of the problem (3.3, 3.5, 3.7, 3.9) generating the relax-
ation SDPI2 . Then we add the RLT inequalities (3.11), generating the relaxation SDPI3 .
Finally, we add the quadratic constraints obtained by the product of the original linear
constraints by the non-negative variables generating SDPI4 . We note that when adding the
RLT constraints (3.11) to the relaxation, we disconsider the diagonal bounds (3.1) already
included. Furthermore, we also consider the MILP formulation of the problem, presented
in Fampa (2008), to obtain the optimal solution of the instances considered, and compute
the relative gap between the optimal solution of the MILP problem and the upper bounds
obtained with the solution of the SDP relaxations.

Our main goal with these numerical experiments is to analyze the impact of each set on
valid inequalities on the quality of the bounds and also on the computation time required
to solve the SDP relaxations.

We present preliminary computational results considering some small instances of the
strategic bidding problem with configurations derived from the Brazilian power system.

Our code was implemented in C and compiled with gcc (GNU COMPILE C). All runs
were conducted on a 8GB Ram, 1.9GHz Intel Core processor running under Windows,
Version: 8. The solution of the SDP relaxations was obtained with the solver CSDP 6.1.1
(Borchers (1999)). The solver CPLEX, v12.2 (Gay (2009)) was used to obtain the optimal
solution of the instances, considering the MILP formulation mentioned above.

Our set of test problems include instances with configurations derived from the south
subsystem of the Brazilian power system, which contains a total of 28 plants that account
for 16% of the national installed capacity. The south subsystem has an installed capacity of
11 GW. Hydro generation accounts for 68% of the installed capacity with 19 hydro plants.
Thermal generation accounts for 32% of the installed capacity with 9 plants.

The input for the test problems is related to the year of 2008 and is available at the
website of the Brazilian Electric System National Operator (Operador Nacional do Sistema
- ONS) (http://www.ons.org.br). We consider the data for the last week of each month of
2008 given at the weekly report of operation (Boletim Semanal de Operação - BMO) and
take into account only the 10 dispatched generators, located in the state Rio Grande do
Sul, that have in fact contributed to attend the demand of the south of Brazil on the given
period. The generation capacity of each generator j ∈ J is considered as its maximum
sampled generation on the period. Let’s denote it by Gj .

In all test problems we consider CEEE (Companhia Estatual de Energia do Rio Grande
do Sul) as the bidding agent. CEEE controls 4 hydroelectric plants totaling 596 MW of
installed capacity which corresponds to 20% of the capacity of the south subsystem. Table
1 shows the plant names, capacities (in MW) and operational costs in R$/MWh, where R$
stands for real, the Brazilian currency. The operational cost of each plant j ∈ E controlled
by CEEE is denoted in the following by Cj and is based on the information available at the
website of the Brazilian electricity regulatory agency, ANEEL (http://www.aneel.gov.br).

To generate 11 instances of different sizes we consider either the 2 first generators in
Table 1 or the 3 first or all 4 of them, generating instances with |E| = 2, |E| = 3, or
|E| = 4 and |J | = 8, |J | = 9 , or |J | = 10, respectively. We also consider different number
of scenarios varying from 2 to 4. For all instances, the generation capacities ḡ∗j , j ∈ E and
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Table 1: CEEE Generation System
Plant Capacity Cost
j ∈ E Gj Cj
Itaúba 344 126
Dona Francisca 124 108
Passo Real 99 111
Canastra 29 122

Table 2: Relative gap between SDP bounds and optimal solutions
Inst|J |,|E|,|S| SDPI1 SDPI2 SDPI3 SDPI4
Inst108,02,02 1156.78% 1151.18% 450.38% 13.56%
Inst208,02,03 923.55% 918.58% 386.70% 0.33%
Inst308,02,03 847.05% 843.56% 351.72% 0.07%
Inst408,02,03 824.61% 821.09% 315.22% 0.00%
Inst508,02,03 682.16% 674.38% 275.21% 9.12%
Inst608,02,03 829.54% 822.46% 351.90% 21.27%
Inst708,02,04 1405.89% 1400.29% 588.51% 10.43%
Inst809,03,02 1014.47% 1010.47% 428.90% 158.31%
Inst909,03,04 898.64% 898.32% 346.48% 85.37%
Inst1010,04,02 447.65% 443.33% 175.90% 105.57%
Inst1110,04,04 1099.32% 1096.77% 476.05% 297.88%

Mean 920.88% 916.40% 377.00% 63.81%

ḡ∗sj , j ∈ J\E, s ∈ S, are randomly selected in the range [0.9Gj , Gj ] and the operational costs
cj , j ∈ E are randomly selected in the range [0.9Cj , 1.1Cj ]. The price bids λ∗sj , j ∈ J \E, s ∈
S are randomly selected in [1.1Cj , 1.5Cj ] and the demands ds, ∀s ∈ S are randomly selected
in [0.8Ḡs, Ḡs], where Ḡs stands for the sum of the generation capacities of all competitor
generators in J \E in scenario s ∈ S. Note that this selection guarantees that the problems
are always bounded, since the competitors can always satisfy the demand with no plant
controlled by CEEE being dispatched. Uniform distribution was used in all raffles.

Table 2 presents the relative gap between the solution of each SDP relaxation and the
optimal solution of the instances, given by (z(RELAX) − z∗)/z∗ × 100, where z(RELAX)
denotes the solution of a given relaxation RELAX and z∗ denotes the optimal solution of
the problem. Table 3 presents the CPU time (in seconds) to solve each SDP relaxation.

The results on Table 2 show that the two first SDP relaxations are very weak, which
is expected since there are no constraints strengthening the relation between the matrix X
and xxT , as defined in (3.12). These constraints are added in the two last relaxations. The
results for SDPI3 already show how effective the RLT constraints are in strengthening the
relaxation and the results for SDPI4 , show that considering quadratic constraints derived
from the linear constraints of the problem can also be very effective to decrease the gaps. On
average, the gap decreased 539.40% from SDPI2 to SDPI3 and 313.19% more from SDPI3
to SDPI4 . Also as excepted, the inclusion of the valid inequalities to the SDP formulation
makes it much harder to solve. The computation time increases a lot from SDPI1 and SDPI2
to SDPI3 and SDPI4 , indicating that we should be cautious when choosing the constraints
to add to the basic SDP relaxation. As future research work, we plan to study the solution
of a separation problem to add the valid inequalities to the relaxation, in order to avoid the
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Table 3: Time (in seconds) to solve the SDP relaxations
Inst|J |,|E|,|S| SDPI1 SDPI2 SDPI3 SDPI4
Inst108,02,02 0.69 0.83 168.91 565.11
Inst208,02,03 0.95 1.00 458.83 1875.48
Inst308,02,03 0.56 0.64 433.11 1990.59
Inst408,02,03 0.58 0.66 447.75 1936.59
Inst508,02,03 0.50 1.11 490.39 2502.92
Inst608,02,03 0.66 0.66 497.03 2266.25
Inst708,02,04 1.22 2.27 1024.75 5832.25
Inst809,03,02 0.84 1.13 266.34 926.13
Inst909,03,04 2.52 2.16 2339.53 7489.00
Inst1010,04,02 1.11 1.38 517.16 1862.88
Inst1110,04,04 2.97 3.02 5189.78 16678.95

big dimension of the SDP problems considered when we add all possible RLT constraints
and quadratic constraints generated when we multiply the linear constraints of the problem.

5 Conclusion

In this paper we present the mathematical formulations of the strategic bidding prob-
lem under uncertainty as a bilevel program and as a non-convex quadratically constrained
quadratic program. We discuss the application of semidefinite programming relaxations
to compute bounds to the strategic bidding problem, considering four different relaxations
with different strength levels, where we obtain stronger relaxations with the addition of
valid inequalities to the weaker ones. As expected from the results presented in the lit-
erature for other applications of SDP relaxations, we conclude that we can obtain very
tight bounds using strong SDP relaxations of the strategic bidding problem. However, the
computational effort to solve the stronger relaxations is quite big. The study indicates that
it is important to choose wisely the constraints to be added to the SDP formulation in
order to get a good trade-off between bound quality and computational effort. A future
research topic would be to investigate the solution of a separation problem to generate the
best possible choices of valid inequalities to be added to an initial basic SDP relaxation.
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