
XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Integer Programming Formulation and GRASP for the
Non-Automatic Bicluster Editing Problem

Teobaldo L. Bulhões Júnior1,Gilberto F. de Sousa Filho2, Lucı́dio dos Anjos F. Cabral1,
Fábio Protti3, Luiz Satoru Ochi3

1 Centro de Informática – Universidade Federal da Paraı́ba (UFPB)
João Pessoa – PB – Brazil

2Instituto de Computação – Universidade Federal Fluminense (UFF)
Niteroi - RJ - Brazil

{teobaldoleite,gilberto,lucidio}@ci.ufpb.br, {satoru, fabio}@ic.uff.br

Abstract. This work addresses the Non-Automatic Bicluster Editing Problem
(NABEP). Given a bipartite graph G and an integer k (the number of biclus-
ters), the objective is to make the least number of editions (additions or dele-
tions of edges) in G in order to make it a biclustered graph, i.e., a disjoint union
of exactly k complete bipartite subgraphs. This problem belongs to the class
NP-Hard, once it can be reduced to the Bicluster Editing Problem, in which the
number of biclusters is not fixed. To our knowledge, we are the first to deal
with this problem. To solve it, we propose an Integer Programming Formula-
tion and a GRASP containing a construction heuristic based on the intersection
neighborhood set and a local search phase composed by three neighborhood
movements procedures. The mathematical model and algorithm were tested on
a set of randomly generated instances and have shown to be efficient in solving
the problem.
KEYWORDS. Biclustering, GRASP, Integer Programming.

1. Introduction
We address in this paper the study of the Non-Automatic Bicluster Editing problem
(NABEP). In this problem, given a bipartite graph G = (V1, V2, k) and an positive in-
teger k ≤ |V1|+ |V2| (number of biclusters), the goal is to achieve the smallest number of
editions (additions or deletions of edges) in G in order to make it a biclustered graph, i.e.,
a disjoint union of exactly k complete bipartite subgraphs. The NABEP is a variation of
the Bicluster Editing Problem (BEP). The idea, in both problems, is to perform partition-
ing in a collection of biclustered data, so that the elements belonging to the same bicluster
have greater similarity to each other. To our knowledge, we are the first to deal with this
problem.

The concept of grouping data into clusters arises in numerous contexts
and disciplines. This subject has been extensively studied and various exact
algorithms [Rahmann et al. 2007, Böcker et al. 2008], approximations and heuristics
[Rahmann et al. 2007, Wittkop et al. 2010] were proposed, in which the goal is to par-
tition a data set into clusters such that elements within a cluster are similar, while between
clusters there is less similarity. This similarity is often modeled as a graph: each ver-
tex represents a data point, and two vertices are connected by an edge if the entities that

1982

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

they represent have some (context-specific) similarity. If the data were perfectly clus-
tered, this would result in a cluster graph, that is, a graph in which every connected
component is a clique. A simple clustering model is then the Cluster Editing problem
[Bansal et al. 2004, Shamir et al. 2004]: find a minimum set of edges to add or delete to
make the graph a cluster graph.

In some settings, the standard clustering model is not satisfactory. An important
example, showed by [Guo et al. 2008], is clustering of gene expression data, in which,
under a number of conditions, the level of expression of a number of genes is measured.
This yields a bipartite similarity graph. Here, clustering only genes or only conditions
often does not yield sufficient insight; we would like to find subsets of genes and sub-
sets of conditions that together behave in a consistent way. This is called biclustering
[Madeira and Oliveira 2004, Tanay et al. 2006]. The concept of biclustering was first in-
troduced in the seventies [Kluger et al. 2003], but its first usage in the context of compu-
tational biology was due to [Cheng and Church 2000].

We can identify some applications for the NABEP in different areas of knowledge,
among them:

Data Mining: data is typically stored in a database (data matrix), in which each record has
a set of attributes. In applications with hundreds and thousands of records, an alternative
to discover new information and knowledge occurs through biclustering.

Imagine books to be sold in a bookstore. The goal is to discover hidden pat-
terns. Discover similar purchases can help the bookstore in recommending new products,
identifying patterns in its customers, creating association rules to assist in promotions
etc. All this information would not be noticeable, since many of the buying patterns are
not apparent. By pairing shops and products (shop register versus product purchased), a
biclustering algorithm can give us a good view of the hidden relationships in data.

Multicast network design: a multicast session is defined as a subset of clients that require
the same information. Each client may require several multicast sessions. The main
limitation is that a telecommunication network does not support multicast control over
many sessions simultaneously. The solution is to group sessions in a limited number of
sessions.

An example use for a multicast session is TV over IP, in which a subset of clients
may require the same channel or the same subset of channels during a given period of
time. In this problem, the biclusters are formed by sets of clients and their required
channels.

In this context, we propose an Integer Programming Formulation and approxima-
tive strategies to solve the NABEP, which is described in section 2. Section 3 describes
the proposed formulation, while sections 4 discusses the GRASP for the NABEP. Further-
more, we present computational results in section 5 and concluding remarks in section 6.

2. Non-Automatic Bicluster Editing Problem
Preliminaries. We consider only undirected bipartite graphs G = (V1, V2, E). Let P4

an induced path containing 4 vertices, ijkl, such that i and l have degree 1 and j and
k have degree 2. The neighborhood of a vertex v is denoted by N(v), and the closed
neighborhood N(v) ∪ {v} is denoted by N [v]. Moreover, we extend this notation to

1983

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

vertex sets, i.e., for a vertex set S, N(S) = (
⋃

v∈S N(v))\S. For a vertex v, N2(v) =
N(N(v))\{v} is the set of vertices that are two edges apart from v. Analogously to N [v],
N2[v] = N(N(v)) ∪ {v}. For a graph G = (V1, V2, E), if the edge (i, j) ∈ E, then its
weight (w(i, j)) is +1 and it is called an active edge; if (i, j) 6∈ E, w(i, j) = −1 and it is
called an inactive edge.

The Figure 1(a) shows a small instance of the problem, in which the partitions
V1 and V2 have dimensions 4 and 3, respectively, and the desired number of biclusters
is k = 2. The edges cross the partitions and connections between vertices of the same
partition are forbidden.

For a given solution to be viable, the following conditions must be satisfied:

• Each partition must be divided in k subsets B whose elements have the same
neighborhood;
• Each vertex v ∈ B has N2[v] = B;
• There is no formation of P4.

0

1

2

3

0’

1’

2’

0

1

2

3

0’

1’

2’

delete

add

(a) (b)

k = 2

Figure 1. (a) An instance of the problem. (b) Optimal solution of the instance.

The figure 1(b) shows a solution composed by two biclusters, bicluster K1, which
has vertex sets {0, 1} ⊆ V1 and {0′} ⊆ V2, and bicluster K2, which has vertex sets
{2, 3} ⊆ V1 and {1′, 2′} ⊆ V2. As we can see, the edge (1, 0) was removed and the edge
(3, 2) was added to the solution; for this reason, we have two editions, exactly the optimal
solution of the instance.

The related works in the literature tackle the generalization of NABEP, the Bi-
cluster Edition Problem - BEP, in which the number of biclusters in the solution is not
fixed and whose unique goal is to minimize the number of editions needed to make the
graph biclustered. [Amit 2004] proves the NP-Hardness of BEP and presents a 11 fac-
tor approximative procedure based on the relaxation of the linear programming model.
Using a simple branching strategy, the BEP can be solved with complexity O(4k + m)
[Protti et al. 2006], where m is the number of edges of the graph and k is the number
of biclusters. [Guo et al. 2008] proposed two data reductions rules to the problem and a
4 factor approximative procedure based on a random heuristic. [Sousa et al. 2012] pro-

1984

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

posed a new data reduction rule and the metaheuristics GRASP and VNS (besides their
hybridization GRASP + VNS) for the BEP.

3. Integer Programming Formulation for the NABEP (IP-NABEP)
In this formulation, the biclusters are indexed by the integers in the set {1, ..., k}. Let Bi

be the bicluster indexed by the integer i. The formulation is as follows:

Data:
k : number of biclusters of the solution.

Sets:
V1, V2: vertices partitions of the graph.
+ij: {(i, j) | i ∈ V1 ∧ j ∈ V2 ∧ w(i, j) = +1}, i.e, active edges between V1 and V2.
−ij: {(i, j) | i ∈ V1 ∧ j ∈ V2 ∧ w(i, j) = −1}, i.e, inactive edges between V1 and V2.
K: {1,2,..,k}. Indices of the biclusters.

Decision variables:
xijk : if the edge (i, j) belongs to the bicluster Bk, then xijk = 1. Otherwise, xijk = 0.
yik : if the vertex i is in the bicluster Bk, then yik = 1. Otherwise, yik = 0.

Minimize
∑
+ij

(1−
∑
k∈K

xijk) +
∑
−ij

∑
k∈K

xijk (1)

subject to:

xijk + 1 ≥ yik + yjk,∀i ∈ V1,∀j ∈ V2,∀k ∈ K, (2)

2xijk ≤ yik + yjk,∀i ∈ V1,∀j ∈ V2,∀k ∈ K, (3)

∑
k∈K

yik = 1,∀i ∈ (V1 ∪ V2), (4)

∑
i∈(V1∪V2)

yik ≥ 1,∀k ∈ K, (5)

|V2| ∗
∑
i∈V1

yik + 1 ≥
∑
j∈V2

yjk, ∀k ∈ K, (6)

|V1| ∗
∑
j∈V2

yjk + 1 ≥
∑
i∈V1

yik, ∀k ∈ K, (7)

xijk, ylk ∈ {0, 1},∀i ∈ V1, ∀j ∈ V2,∀l ∈ (V1 ∪ V2),∀k ∈ K, (8)

The objective function (1) minimizes the number of edges removed from the graph
(first sum) and the number of edges added to the graph (last sum). The constraint sets
(2) and (3) ensure that the edge (i, j) belongs to the bicluster Bk if, and only if, the
vertices i and j are in the bicluster Bk - that is, yik = 1 and yjk = 1. Note that (2)

1985

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

and (3) automatically guarantee that there is no P4 in the solution. The constraint set (4)
associates each vertex of the graph G to exactly one bicluster, while the constraint set (5)
avoids the presence of empty biclusters in the solution. Finally, constraint sets (6) and
(7) forbid biclusters with zero vertices in one partition and more than one vertex in the
another partition. (8) concerns about the integrality of the variables.

4. GRASP
GRASP [Resende 2001] is an iterative procedure in which each iteration consists of two
phases: a solution construction phase and a local search phase. The best solution obtained
between all iterations is considered the final solution. This section presents the proposed
GRASP for the NABEP.

4.1. Construction Phase
The construction phase, illustrated in Figure 2, starts with an empty graph G’. At each
iteration, it creates a candidate list (CL), consisting of the set {(i, j) | i ∈ V1 ∧ j ∈ V2},
and a restricted candidate list (RCL), from which an edge (i, j) is randomly chosen. The
RCL corresponds to the best candidates of the CL according to the greedy function g(i, j)
that is applied to each edge:

g(i, j) = w(i, j) + in(i, j) + diff (i, j)− out(i, j), (9)
where:

• w(i, j): represents the weight of the edge (i, j);
• in(i, j): sum of weights of active edges between i and N2(j) and between j and
N2(i);
• diff (i, j): sum of weights of inactive edges between i and N2(j) and between j

and N2(i);
• out(i, j): sum of weights of active edges between i and {v | v /∈ {N1(i)−N2(j)}}

and between j and {v | v /∈ {N1(j)−N2(i)}}.
The elements in RCL satisfy the condition:

g(i, j) ≥ gmin + α(gmax − gmin), (10)

where gmin = min{g(i, j) | (i, j) ∈ LC}, gmax = max{g(i, j) | (i, j) ∈ LC} and
α ∈ (0, 1).

After obtaining RCL and choosing a random (i, j) ∈ RLC , the bicluster C, which
has vertex set N(i) ∪N(j), is added to the solution G′ and all vertices v ∈ N(i) ∪N(j)
are removed from G. The construction algorithm repeats this iteration while there are
candidates edges.

There is no guarantee that, when there is no more candidate edges, the produced
graph, G′, has the desired number (k) of biclusters. Thus, it is necessary to call the proce-
dure AdjustBiclusters to perform Break-Bicluster movements (which break a bicluster
into two biclusters), if the number of biclusters of G′ is less than k, or Join-Bicluster
movements (which joins two biclusters), if the number of biclusters of G′ is greater than
k. We give further details about Break-Bicluster and Join-Bicluster in the next subsec-
tion.

1986

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

procedure ConstructGRASP(G = (V1, V2, E), α, g(.))
1. G’← (Ø,Ø,Ø);
2. while G 6= Ø do
3. CL← {(i, j)|i ∈ V1 ∧ j ∈ V2};
4. RCL← {(i, j) ∈ CL | g(i, j) ≥ gmax − α(gmax − gmin)};
5. (i, j)← random selection in RCL;
6. C ← N(i) ∪N(j);
7. transform G[C] into an isolated biclique;
8. G′ ← G′ ∪G[C];
9. G← G[V \C];
10. end-while
11. AdjustBiclusters(G′);
12. return(G′).
end ConstructGRASP.

Figure 2. Algorithm GRASP: construction phase.

4.2. Local Search Phase
Once a feasible solution is available, some neighborhood movements can be applied. For
all neighborhood movements procedures, consider a solution G formed by a set C of
biclusters. Figure 3 illustrates all movements.

Mov-Vertex: for each bicluster ci ∈ C, consider each vertex v ∈ ci, cut v from ci and add
it to another bicluster cj ∈ C\ci.
Join-Bicluster: for each bicluster pair {ci, cj} ∈ C, create a new bicluster ck by the union
of biclusters ci and cj , add ck to C and remove ci and cj from C.

Break-Bicluster: for each bicluster ci ∈ C, create two new biclusters, cj and ck, by the
separation of the vertices of ci, add cj and ck to C, remove ci from C.

To divide a bicluster into two biclusters, we use the function bind(v), which ex-
amines how the vertex v is connected to the elements of its current bicluster:

bind(v) = bindin(v)− bindout(v), (11)

where bindin(v) represents the number of edges ij ∈ +ij between v and any vertex within
its current bicluster and bindout(v) represents the number of edges ij ∈ +ij between v
and any vertex outside its bicluster. The breakdown of bicluster ci uses the following
algorithm: be V a vertex partition of bicluster ci; all vertices v ∈ V with bind(v) < 0
will be cut from ci to form the bicluster cj alongside every vertex i ∈ N(v) such that
bind(i) <= +1. The remaining elements in ci form the second bicluster ck.

All neighborhood movements must preserve the viability of the solution. There-
fore, for the number of biclusters of the solution remains equal to k, the movement Mov-
Vertex can not be applied to a bicluster that has only one vertex, as well as any movement
Join-Bicluster must be followed by a movement Break-Bicluster (and vice versa). These
restrictions culminate in movements JoinBreak-Bicluster, Join-Bicluster followed by
Break-Bicluster, and BreakJoin-Bicluster, Break-Bicluster followed by Join-Bicluster.

In the Local Search phase, neighbors (close solutions) of the solution obtained

1987

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

B

B

B’

B’

i

i

(a)

B

B’’

B’

(b)

B

B’ B’’

(c)

Figure 3. Mov-Vertex (a), Join-Bicluster (b) and Break-Bicluster (c).

during the construction phase are generated through the method Variable Neighbourhood
Descent (VND), described in [Hansen et al. 2008], applying the neighborhoods of the set
N = { BreakJoin-Bicluster, JoinBreak-Bicluster, Mov-Vertex }, in the order they are.

5. Computational Results

All algorithms tested in this work were developed with the C++ language and with the
aid of the mathematical solver CPLEX 11. All computational experiments were done on
a Intel Core 2 Quad machine (4 processors of 2.33 GHz and 4 GB of RAM), running the
operating system Linux Ubuntu 9.04.

The instances used in this work were defined in [Sousa et al. 2012]. Each
value pair (n,m) represents n = |V1| and m = |V2|, being chosen instances
with density 0.5, which represents the probability of existence of the edge dur-
ing the random construction. These instances have the following dimensions:
{(5, 7); (7, 11); (6, 12); (6, 20); (10, 16); (16, 30); (24, 40); (20, 35)}.

For the comparison between the proposed Integer Programming Formulation (IP-
NABEP), which was implemented using the solver CPLEX, and the GRASP, were used
the instances {(5, 7); (7, 11); (10, 16)}, varying the number of biclusters k, in each in-
stance, from 1 to n + m. The IP-NABEP, due to its deterministic nature, was executed
only once, while the GRASP was performed 20 times for each instance with 100 iterations
in each execution, obtaining its minimum and medium solution. The results are shown in
the table below.

For each line of Table 1, the first three columns represent the dimensions of the
tested instance. The remaining columns are divided into two groups: IP-NABEP and
GRASP. In the IP-NABEP group, the columnE∗ denotes the optimal value and the column
Time indicates the computing time (in milliseconds) spent solving the instance (we set the
maximum computing time to 6 hours). In the GRASP group, the column Emin indicates
the best value found by the method, Eavg represents the average value of its solution,
GAPavg(%) shows the percentage reduction between Eavg and E∗ and Tavg is the average
computing time in milliseconds.

The Table 1 does not bring all values of k for each instance due to space restrictions

1988

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Instance IP-NABEP GRASP
|V1| |V2| k E* Time Emin Eavg GAPavg (%) Tavg(ms)

3 7 275 7 7 0 49.1
4 8 523 8 8 0 47.7

5 7 6 10 5740 10 10 0 52.1
7 11 5755 11 11 0 54.55
8 12 6812 12 12 0 56.9
9 14 9000 14 14 0 57.65
3 11 252 11 11 0 143.1
4 13 1135 13 13 0 140.05

7 11 6 17 18223 17 17 0 166.15
7 18 29860 18 18.85 4.7 163.3
9 22 46175 22 22 0 157.65
10 23 103743 23 23 0 159
2 46 3873 46 46 0 278.2
4 39 49042 39 39.25 0.6 274.5

10 16 5 40 242543 40 40.35 0.87 298.7
7 42 617805 42 42.55 1.3 340
8 43 2201062 43 43.85 1.9 367.5
10 46 12962461 46 47 2.17 381

Table 1. Computational results between IP-NABEP and GRASP.

in this paper 1. The GRASP procedure found the best result in all instances (Emin) - even
its average value reached optimal value in 12 of the 18 instances tested. The GRASP still
showed to be efficient in its computational time. As an example, the IP-NABEP spent
12,962 seconds to execute the instance (10, 16) with k = 10, while the GRASP required,
in average, 381 milliseconds.

The larger instances were not executed by IP-NABEP due to its high demand
of computational resources (memory and CPU time). Therefore, we compared only the
construction heuristic (CH) to the GRASP with the instances of medium size { (6, 12);
(6, 20); (16, 30); (24, 40); (20, 35) }. The construction heuristic is the construction
procedure of GRASP with α = 0. The heuristic CH was executed only once (since it
is deterministic) and the GRASP was performed 20 times for each instance with 100
iterations in each execution, obtaining its minimum and medium solution.

The table 2 demonstrates that the heuristic CH produces solutions closed to the
GRASP solutions. For example, for the instance (20,35) with k = 47, the GAP between
CH and GRASP is of only 3.5%. This fact becomes clearer if we consider the average
GAP of all instances tested, which is 14%. As a consequence, the effort of the local
search phase is reduced, allowing the GRASP to reach good computational efficiency
even over medium instances, obtaining, in the worst case, an average time of 5.3 seconds
((24, 40) with k=23).

1More results can be found at https://sites.google.com/site/biclustereditingproblem/technical-reports.

1989

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Instance CH GRASP
|V1| |V2| k E T(ms) Emin Eavg GAPavg (%) Tavg(ms)

5 26 0 15 15 -42.3 116.9
6 12 9 25 0 19 19 -24 141.05

13 30 1 27 27 -10 146.2
2 54 1 34 34 -37.03 222.4

6 20 7 38 0 28 28 -26.31 268.35
12 36 1 34 34 -5.55 335.2
17 46 1 41 41.25 -10.32 343.95
5 215 2 156 164.75 -23.37 1120.7

11 201 6 165 170.2 -15.32 1527
16 30 17 201 9 176 179.4 -10.74 1782.45

23 207 13 186 189.35 -8.52 1960.4
29 209 16 196 199.95 -4.33 1955.45
35 225 17 212 214.1 -4.84 1866.35
5 478 5 347 359.05 -24.88 2733.5

11 437 11 350 356.55 -18.4 4125.4
17 421 19 355 362.1 -13.99 4981.45
23 422 26 368 374.2 -11.32 5334.25

24 40 29 421 32 384 386.65 -8.15 5510.4
35 440 36 393 399.35 -9.23 5161.65
41 448 40 413 418.7 -6.54 4981.95
47 459 44 429 434.25 -5.39 4814.9
53 466 45 446 446 -4.29 4722.1
5 312 2 244 248.45 -20.36 1741.75

11 305 6 243 247.15 -18.96 2436.6
17 299 10 252 255.5 -14.54 2914.3

20 35 23 292 15 262 264.95 -9.26 3238.8
29 310 21 270 272 -12.25 3330.25
35 323 24 288 291.2 -9.84 3340.05
41 334 26 304 308.85 -7.52 3176.65
47 342 28 330 330 -3.5 3124.55

Table 2. Computational results between construction heuristic CH and GRASP.

6. Concluding remarks

In this paper we have addressed the Non-Automatic Bicluter Editing Problem (NABEP),
which aims at making a bipartite graph G a vertex-disjoint union of k complete bipartite
subgraphs, by editing the smallest possible number of edges.

We have proposed an Integer Programming Formulation for the NABEP, a con-
struction heuristic based on the intersection neighborhood set, three neighborhood move-
ments procedures and a GRASP. For the first 18 tested instances, GRASP achieved the
optimal solution in all problems, maintaining the average computational time below 1
second. For the 29 instances of medium size, the IP-NABEP failed to find the optimal
solution after 6 hours of processing.

As a future work, we intend to propose new neighborhood movements and to
develop new metaheuristics for the NABEP with phases of shake of solutions, such as

1990

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Iterated Local Search (ILS) and Variable Neighborhood Search (VNS).

References
Amit, N. (2004). The bicluster graph editing problem. Master’s thesis, Tel Aviv Univer-

sity.

Bansal, N., Blum, A., and Chawla, S. (2004). Correlation clustering. Machine Learning,
56:89–113.

Böcker, S., Briesemeister, S., and Klau, G. W. (2008). Exact algorithms for cluster edit-
ing: evaluation and experiments. In Proceedings of the 7th international conference
on Experimental algorithms, WEA’08, pages 289–302, Berlin, Heidelberg. Springer-
Verlag.

Cheng, Y. and Church, G. M. (2000). Biclustering of expression data. In Proceedings
of the Eighth International Conference on Intelligent Systems for Molecular Biology,
pages 93–103. AAAI Press.

Guo, J., Hüffner, F., Komusiewicz, C., and Zhang, Y. (2008). Improved algorithms for
bicluster editing. In TAMC’08, pages 445–456.

Hansen, P., Mladenovic, N., and Moreno Perez, J. (2008). Variable neighbourhood search:
methods and applications. 4OR: A Quarterly Journal of Operations Research, 6:319–
360. 10.1007/s10288-008-0089-1.

Kluger, Y., Basri, R., Chang, J., and Gerstein, M. (2003). Spectral biclustering of mi-
croarray data: Coclustering genes and conditions. 13:703–716.

Madeira, S. C. and Oliveira, A. L. (2004). Biclustering algorithms for biological data
analysis: a survey. In IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, volume 1, pages 24–45.

Protti, F., da Silva, M., and Szwarcfiter, J. (2006). Applying modular decomposition to
parameterized bicluster editing. In Bodlaender, H. and Langston, M., editors, Param-
eterized and Exact Computation, volume 4169 of Lecture Notes in Computer Science,
pages 1–12. Springer Berlin / Heidelberg.

Rahmann, S., Wittkop, T., Baumbach, J., Martin, M., Truss, A., and Böcker, S. (2007).
Exact and heuristic algorithms for weighted cluster editing. Comput Syst Bioinformat-
ics Conf, 6(1):391–401.

Resende, M. (2001). Greedy randomized adaptive search procedures. In Floudas, C. A.
and Pardalos, P. M., editors, Encyclopedia of Optimization, pages 913–922. Springer
US.

Shamir, R., Sharan, R., and Tsur, D. (2004). Cluster graph modification problems. Dis-
crete Applied Mathematics, 144:173–182.

Sousa, G. F., dos Anjos F. Cabral, L., Ochi, L. S., and Protti, F. (2012). Hybrid metaheuris-
tic for bicluster editing problem. Electronic Notes in Discrete Mathematics, 39(0):35
– 42. EURO Mini Conference.

Tanay, A., Sharan, R., and Shamir, R. (2006). Biclustering algorithms: A survey. In Aluru,
S., editor, Handbook of Computational Molecular Biology. Chapman Hall/CRC Press.

1991

XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Wittkop, T., Emig, D., Lange, S. J., Rahmann, S., Albrecht, M., Morris, J. H., Böcker,
S., Stoye, J., and Baumbach, J. (2010). Partitioning biological data with transitivity
clustering. Nature Methods, 7(6):419–420.

1992

