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ABSTRACT:   

Flying Elephants (FE) is a generalization and a new interpretation of the Hyperbolic 

Smoothing approach. The article introduces the fundamental smoothing procedures. It presents a 

general overview of successful applications of the approach for solving a select set of five 

important problems,  namely: distance geometry, covering, clustering, Fermat-Weber and hub 

location. For each problem it is presented the original non-smooth formulation and the 

succedaneous completely differentiable one. Computational experiments for all related problems 

obtained results, which exhibited a high level of performance according to the different criteria of 

consistency, robustness and efficiency. For each problem, some results to illustrate the 

performance of  FE are also presented.  

KEYWORDS.  Non-smooth Programming, Smoothing, Distance Geometry, Clustering,  

Location. 

1. Introduction  

 

The core idea of the Flying Elephants method is the smoothing of a given non-

differentiable problem. In a sense, the process whereby this is achieved is a generalization and a 

new interpretation of a smoothing scheme, called Hyperbolic Smoothing (HS), presented in 

Santos (1997) for non-differentiable problems in general.  This technique was developed through 

an adaptation of the hyperbolic penalty method originally introduced by Xavier (1982) in order to 

solve the general non-linear programming problem.  

By smoothing we fundamentally mean the substitution of an intrinsically non-

differentiable two-level problem by a  C∞
  differentiable single-level alternative. This is 

achieved through the solution of a sequence of differentiable sub-problems which gradually 

approaches the original problem.  Each sub-problem, owing to its being indefinitely 

differentiable, can be comfortably solved by using the most powerful and efficient algorithms, 

such as conjugate gradient, quasi-Newton or Newton methods. 

First, the FE method incorporates any  C∞
 smoothing scheme, for instance the 

hyperbolic smoothing approach. The HS approach has been applied for solving a set of 

mathematical hard problems. Despite these problems present a non-differentiable and a non-

convex structure with a large number of local minimizers, the HS method has produced 

efficiently and reliably very deep local minima. The paper presents a survey of successful 

applications of the HS approach for solving a select set of important problems, namely: distance 

geometry (Macambira ((2003), Xavier (2003), Souza(2010)  and  Souza et al. (2011)),   covering 

(Xavier & Oliveira (2005)),   clustering  (Xavier (2010), Xavier &-Xavier (2011)  and  Bagirov et 

al. (2012b)),   Fermat-Weber  (Xavier (2012) and Xavier et al. (2012))   and   hub location  

(Gesteira (2012), and Xavier, Gesteira & Xavier (2012)).  There are other successful applications 

which are not presented in this survey, such as:  minimax  (Chaves(1997)  and Bagirov  et al. 

(2012a))  and  packing problems. 
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The new name of the methodology, Flying Elephants, is definitely not associated to any 

analogy with the biology area. It is only a metaphor, but this name is fundamentally associated 

with properties of the method. The Flying feature is directly derived from the  

C∞
differentiability property of the method, which has the necessary power to make the fly of 

the heavy elephant feasible. Moreover, it permits intergalactic trips into spaces with large number 

of dimensions, differently of the short local searches associated to traditional heuristic 

algorithms. On the other side, the convexification feature also associated to the HS method is 

analogous to the local action of the Elephant landing, eliminating a lot of local minima points. 

 

2. The Fundamental Smoothing Procedures   

 

The Flying Elephants method is based on the hyperbolic smoothing of the non-

differentiable functions belonging to the optimization problem formulation.  We will present the 

two basic smoothing procedures.  First, we will consider the smoothing of the absolute absolute 

value function   u   where   u ∈ℜ .  For this purpose,  0y > , let us define the function: 

                                                   
2 2( , )u uθ γ γ= +                                                   (1) 

 

Function   θ   has the following properties: 

 

 (a) 
0

lim ( , )u u
γ

θ γ
→

= ; 

(b)  .is C functionθ ∞
 

 

For smoothing the function   ( ) max(0, )u uψ =   we use: 

 

                                   ( )2 2( , ) / 2u u uφ τ τ= + +                                   (2) 

 

Function   ψ   has the following properties: 

 

(a) 
0

lim ( , ) ( )u u
γ

φ γ ψ
→

=  

(b)  ( , )uφ τ is an increasing convex   C 
∞
   function  in  variable  u. 

 

 

3. Distance Geometry Problem 

 

Let ( , )G V E=  denote a graph, in which for each arc  ( , )i j E∈   it is associated a 

measure  0
ij

a > .  The problem consists of associating a vector  
n

i
x ∈ℜ   for each knot  i V∈ ,   

basically addressed to represent the position of this knot into a  n-dimensional space,  so that 

Euclidean distances between knots,  
i j

x x− ,  corresponds appropriately to the given measures  

ij
a : 

                                    ( )
2

( , )

i j ij

i j E

minimize f(x) x x a
∈

= − −∑                                    (3) 
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This formulation presents the non-differentiable property due the presence of the 

Euclidean norm term. Moreover, the objective function is non-convex, so the problem has 

innumerable local minima.  For solving the problem (3) by using the FE technique is only 

necessary to use the function  ( , )uθ γ    and to define  
i j

u x x= − : 

                        ( )( )
2

( , )

,
i j ij ij

i j E

minimize f(x) x x a aθ γ
∈

= − − −∑                         (4) 

Beside its smoothing properties the function  θ   also has the important convexification 

power. Xavier (2003) shows the following theoretical result:   

 

Proposition 1: There is a value  γ
−

  such as, for all values  γ γ
−

>   the Hessian matrix  
2 ( )F x∇   

will be positive definite.  

 

 Souza et al (2011) extend the theoretical result of Proposition 1 to a more general 

distance geometry problem. The presented computational results for classical instances clearly 

show both the robustness and the efficiency of the FE method. 

 In order to illustrate the computational properties of the Flying Elephants method, we 

took the traditional lattice problem originally proposed by Moré and Wu (1995). This instance is 

a synthetic problem, where the knots are located on the intersection of  s  planes that cut a cube 

in the three principal directions in equal intervals. The numerical experiments have been carried 

out on a Intel Core i7-2620M Windows Notebook with 2.70GHz and 8 GB RAM. The columns 

of Table 1 show the number of splits of the cube  ( )s ,  the number of variables of the problem  

3( 3 )m s= ,  the occurrences of correct solutions obtained in 10 tentative solutions  (Occur.),  the 

average value of the correct solutions  
FE

f    and  the mean CPU time  ( MeanT )  given in seconds 

associated to 10 tentative solutions.  

 

s  3n = 3s   Occur. 
AverFE

f  
MeanT  

 s  3n = 3s   Occur. 
AverFE

f  
MeanT  

3 81 0 - 0.1  12 5184 8 0.15E-1 143 

4 192 6 0.27E-6 0.7  13 6591 7 0.32E-1 222 

5 375 8 0.29E-5 2.8  14 8232 8 0.18E-1 380 

6 648 8 0.19E-4 7.6  15 10125 6 0.65E-1 543 

7 1029 5 0.16E-4 19  16 12288 7 0.42E-1 835 

8 1536 8 0.29E-3 45  17 14739 6 0.16E0 1270 

9 2187 6 0.86E-3 97  18 17496 7 0.21E0 1853 

10 3000 7 0.95E-3 45  19 20577 8 0.24E0 2335 

11 3993 6 0.17E-2 81  20 24000 8 0.59E0 3187 

 
Table 1: Distance Geometry Problem - Moré-Wu Lattice Instance 

  

This considered lattice instance is a synthetic problem which of global solution  f
*
 assumes a 

value equal zero,  f
*
=0.  So, the small values exhibited in the column  

AverFE
f  of Table 1 indicate 

the robustness of the FE approach, from cases  s=4  to  s=20,  the last one with  3119800 arcs.  

An and Tao (2000) proposed an approach for solving this problem based on the difference of 

convex functions optimization algorithms and exhibits similar results, but with up to  s=16. 
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4.  Covering Problems   
 

Let  S   be a finite region in  
2ℜ .   A set of  q   figures constitutes a covering of order  1  

of   S;  if each point   s S∈   belongs to at least one figure.  Coverages of a higher order can be 

defined in a similar manner.  Problems inherent to the covering of  
2ℜ    

regions by  circles, of   
3ℜ  

 
 regions by spheres, and even regions in higher dimensional spaces have been the object of 

research for many decades. We consider the special case of covering a finite plane domain   S  

optimally by a given number  q  of circles.  We first discretize the domain  S;  into a finite set of   

m   points  , 1, ,
j

s j m= L .   Let  , 1, ,
i

x i q= L   be the centers of the circles that must cover 

this set of points. 

The optimal placing of the centers must provide the best-quality covering, that is, it must 

minimize the most critical covering.  If  X
* 
  denotes an optimal placement and  X  is the set of all 

placements, the covering problem assumes a   min-max-min  form: 

 

                                 
2 2

1, , 1, ,

arg min max min ,
q

*

j i
j m i qX

X = s x
= =∈ℜ

−
K K

                             (5) 

By performing an  ε   perturbation and  by using the FE approach the three-level strongly 

non-differentiable   min-max-min   problem can be transformed in a one-level completely smooth 

one: 

                    

2
1

: ( , ) , 1, ,
q

j i

i

minimize z

subject to z s x j mφ τ ε
=

− − ≥ =∑ K

                    (6) 

 

In order to show the computational properties of the Flying Elephants method, Figure 1 

shows the results obtained in the solution of three covering problems: Brazil (5 circles), The 

Netherlands (5 circles) and state of New York (7 circles).  The number of discretization points 

were, respectively, 6620, 9220 and 7225. It is possible to find  very few works presenting 

computational results with similar quality to those obtained by  FE approach, we cite Wei (2008).   

 

         
 

Figure 1: Coverages of Brazil, Netherlands and state of New York 

 

 

5.  Clustering Problems  
 

Let { }1 2, , , mS s s s= K denote a set of m  cities or locations in an Euclidean  n-

dimensional space  
nℜ ,  to be clustered into a given number  q   of disjoint clusters. To 

formulate the original clustering problem as a  min minsum− −   problem,  we proceed as 

follows.  Let  , 1, ,
i

x i q= L   be the locations of facilities or centroids. The set of these 

centroids coordinates will be represented by  
nq

X ∈ℜ .  Given a point  
j

s S∈ ,  we initially 

calculate the Euclidian distance from  
j

s   to the  nearest centroid: 
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21, ,
minj j i

i q
z s x

=
= −

L

 

The most frequent measurement of the quality of a clustering associated to a position of  

q   centroids is provided by the minimum sum of squares (MSSC) of these distances.  

                                    

2

1

21, ,
: min , 1, ,

m

j

j

j j i
i q

minimize z

subject to z s x j m

=

=
= − =

∑

K

K

                       (7) 

 

As the partial derivative of  ( , )
j j

h x z=   with respect to  , 1, ,
j

z j m= K   is not equal to 

zero, it is possible to use the Implicit Function Theorem, see by example: Jittorntrum (1978), to 

calculate each component  , 1, ,
j

z j m= K   as a function of the centroid variables  

, 1, ,
i

x i q= K .   In this way, the unconstrained problem 

 

                                  
2

1

( )
m

j

j

minimize f(x) z x
=

=∑ ,                                     (8) 

is obtained, where each  ( )
j

z x   results from the calculation of the single zero of each 

equation below, since each term  φ   above strictly increases together with variable  
j

z : 

           
1

( , ) ( ( , , ), ) 0, 1, ,
q

j j j j i

i

h x z z s x j mφ θ γ τ ε
=

= − − = =∑ K               (9) 

Again, due to the Implicit Function Theorem, the functions  ( )
j

z x   have all derivatives 

with respect to the variables  , 1, ,
i

x i q= K ,  and therefore it is possible to calculate the gradient 

of the objective function of problem (8),  

                                             
1

( ) 2 ( ) ( ).
m

j j

j

f x z x z x
=

∇ = ∇∑                                    (10) 

where  

                         ,
),(

/),()(
j

j

jj
z

zxh
zxhxz

∂

∂
−∇=∇                                    (11)  

while  ( , )
j

h x z∇   and  ( , ) /
j j

h x z z∂ ∂   are obtained from equations (9) and from 

definitions of function  ( , )yφ τ and    ( , , )
j i

s xθ γ . 

Xavier (2010) introduces the use of the FE approach for solving the MSSC problem. The 

presented computational results exhibit a performance with robustness, efficiency and 

consistency, as well as with the capacity to solve large instances. Xavier & Xavier (2011)  

present a pruning scheme which speeds up the performance of the FE approach up to 500 times 

maintaining the same robustness.  Bagirov et al (2012b) propose an algorithm which is based on 

the combination of FE approach, without the pruning scheme, and a incremental approach to get 

a good starting point. It is considered the solution of the largest clustering instances presented in 

the literature. A comparison with other two top algorithms demonstrates that the proposed 

algorithm is more accurate.  
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Below we present a new computational experiment in order to exhibit the performance of 

the FE method and, in a particular way, to show its capacity for solving very large clustering 

problems.  We generate a synthetic data sets with  m=5000000  observations in space with  n=10 

dimensions.  The observations were generated as random perturbations of 10 known centers. The 

numerical experiments have been carried out on a Intel Core i7-2620M Windows Notebook with 

2.70GHz  and  8 GB RAM.  

Table  2  presents a synthesis of the computational results. We vary the number of 

clusters  q=2,  and for each number of clusters, ten different randomly chosen starting points were 

used. The  columns show the number of clusters  (q),  the best solution produced   (
BestFE

f )  by 

the FE approach, the number of occurrences of the best solution  (Occur.),  the average deviation 

of the 10 solutions  ( MeanE )  in relation to the best solution obtained  and  CPU mean time given 

in seconds  ( MeanT )  associated to 10 tentative solutions. The last row of each table,  represented 

by character   c  of center,  informs the sum of variances of the   10   synthetic groups, which is 

greater than the obtained value by the FE approach for the case  q=10.  This result demonstrates 

unequivocally the robustness of new method. 

 

q  
BestFE

f   Occur. MeanE  MeanT  

2 0.456807E7 3 0.94 16.12 

3 0.373567E7 1 1.21 24.69 

4 0.323058E7 1 0.91 32.90 

5 0.274135E7 1 0.09 26.06 

6 0.248541E7 1 0.04 36.55 

7 0.222897E7 1 0.19 43.24 

8 0.197977E7 2 0.12 45.38 

9 0.173581E7 2 0.10 42.78 

10 0.149703E7 10 0.00 32.98 

c 0.150000E7 - - - 

Table 2: Clustering 5000000 Synthetic Observation with  n = 10  Dimensions 

 

 

 

6. The Fermat-Weber Problem 

 

Let  { }1 2, , , mS s s s= K  denote a set of  m   cities or locations in an Euclidean planar 

space  
2ℜ ,  with a corresponding set of demands  { }1 2, , , mW w w w= K   to be attended by  q ,  

a given number of facilities. To formulate the Fermat-Weber  problem as a min minsum− − , we 

proceed as follows.  Let , 1, ,
i

x i q= L   be the locations of facilities or centroids.  The set of 

these centroid coordinates will be represented by 
2q

X ∈ℜ .  Given a point  
j

s S∈ ,  we initially 

calculate the Euclidian distance from  
j

s  to the  nearest centroid:  
21, ,

minj j i
i q

z s x
=

= −
L

.   The 

Fermat-Weber problem considers the placing of  q   facilities in order to minimize the total 

transportation cost:  
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1

21, ,
: min , 1, ,

m

j j

j

j j i
i q

minimize w z

subject to z s x j m

=

=
= − =

∑

K

K

                         (12) 

 

As the partial derivative of  ( , )
j j

h x z=   with respect to  , 1, ,
j

z j m= K   is not equal to 

zero, it is possible to use the Implicit Function Theorem to calculate each component  

, 1, ,
j

z j m= K   as a function of the centroid variables  , 1, ,
i

x i q= K .  This way, the 

unconstrained problem:  
 

                            
1

( )
m

j j

j

minimize f(x) w z x
=

=∑ ,                                        (13) 

is obtained, where each  ( )
j

z x   results from the calculation of the single zero of each 

equation below, since each term  φ   above strictly increases together with variable  
j

z : 

                               
1

( , ) ( ( , , ), ) 0, 1, ,
q

j j j j i

i

h x z z s x j mφ θ γ τ ε
=

= − − = =∑ K                     (14) 

Again, due to the Implicit Function Theorem, the functions  ( )
j

z x   have all derivatives 

with respect to the variables  , 1, ,
i

x i q= K ,  and therefore it is possible to calculate the gradient 

of the objective function of problem (13),  

                                                 
1

( ) ( ).
m

j j

j

f x w z x
=

∇ = ∇∑                                               (15) 

where  

                                            .
),(

/),()(
j

j

jj
z

zxh
zxhxz

∂

∂
−∇=∇                                            (16) 

 

 
This way, it is easy to solve problem (13) by making use of any method based on first 

order derivative information. Finally, it must be emphasized that problem (13) is defined on a  

(2 q )-dimensional space, so it is a small problem, since the number of clusters, q ;  is, in general, 

very small for real applications. 

Xavier (2012) introduces the use of the FE approach to solve the Fermat-Weber problem. 

The computational experiments with the new approach show a  performance similar to  the top 

algorithms for solving problems up to 1060 cities, the previous largest instance, see Brimberg et 

al (2000)  and  Plastino et al (2011).   Xavier (2012)  and  Xavier et al (2012)  present also results 

for problems never considered in the literature, with up to 85900 cities, a new superior bound  

size about 80 times larger. 
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q  
BestFE

f   Occur. MeanE  MeanT  

2 0.163625E11 6 0.27 25.33 

3 0.127835E11 10 0.00 50.91 

4 0.108063E11 10 0.00 74.62 

5 0.984539E10 7 0.11 121.02 

6 0.902515E10 10 0.00 156.63 

7 0.836416E10 3 0.18 206.71 

8 0.778239E10 10 0.00 260.89 

9 0.737264E10 9 0.09 317.09 

10 0.704126E10 1 0.19 381.33 

15 0.576935E10 10 0.00 937.84 

20 0.502191E10 1 0.13 1690.06 

30 0.411982E10 2 0.08 4062.92 

40 0.358238E10 1 0.11 8169.64 

Table 3: Fermat-Weber Problem - Pla85900 Instance 

 

 

We reproduce in Table 3  the results of the experiment for the new largest instance 

Pla85900. Numerical experiments have been carried out on a PC Intel Pentium T4300, 2.1GHz 

CPU with 4GB RAM, Windows 7,  32 bits.  

Table  3  contains: the number of facilities  q;  the best objective function value produced 

by the FE method  
BestFE

f   by using a set of random starting points; the number of occurrences of 

the best solution  Occur.;  the perceptual deviation value  MeanE  of the set of 10 solutions related 

to the best value produced by the FE method  and  the mean CPU time given in seconds MeanT .  

The low values in the column  MeanE  show unequivocally the consistence of the FE algorithm. 

As there is not any recorded result for this instance the obtained  values for the objective function 

and for the CPU time are a challenge for future research.  

 

 

7. Hub location Problems 

 
The continuous  p-hub median problem is a location problem which requires finding a set 

of  p  hubs in a planar region, in order to minimize a particular transportation cost function. To 

formulate this problem, we proceed as follows. Let  { }1 2, , , mS s s s= K  denote a set of  m   

cities or locations in an Euclidean planar space  
2ℜ .   Let  

jl
w   be the demand between two 

points   j   and   l .    Let , 1, ,
i

x i p= L    be the hubs,  where each   
2

i
x ∈ℜ  . 

Concerning the hub-and-spoke problem under consideration, the connections between 

each pair of points  j  and   l ;  as depicted by Figure 1, have always three parts:  from the origin 

point   j   to a first hub   a,   from  a   to a second hub   b   and  from   b  to destination point   l.   

Multiple allocations is permitted, meaning that any given point can be served by one or more 

hubs.  The first and the second hubs can be coincident (i.e.,  a=b),  meaning that a unique hub is 

used to connect the origin point  j  and the destination point   l.   Figure (2)  shows the   p
2
   

possible connections between two cities. 

The p-hub median problem corresponds to minimizing the total cost between all pairs of 

cities taking the unitary cost value for all connections: 
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Figure 2: The set of connections between point  j  and point  l  

 

 

                         

1 1

, 1, ,
: min , , 1, ,

m m

jl jl

j l

jl jabl
a b p

minimize w z

subject to z z j l m

= =

=
= =

∑ ∑

K

K

                         (17) 

 

 

where 
2 22jabl j a a b b l

z s x x x x sα= − + − + −   and α   is the reduction factor: 

0 1α≤ ≤ . 

By using FE approach, it is possible to use once more the Implicit Function Theorem to 

calculate each component  , , 1, ,
jl

z j l m= K   as a function of the centroid variables   

, 1, ,
i

x i p= L .   So, the unconstrained problem 

 

                            
1 1

( )
m m

jl jl

j l

minimize f(x) w z x
= =

=∑ ∑ ,                             (18) 

is obtained, where each  ( )
jl

z x   results from the calculation of the single zero of each equation: 

1 1

( , ) [ ( ( ( , , ), )

( , , ), ) ( , , ), )) 0, , 1, ,

p p

jl jl jl j a

a b

j a j a

h x z z s x

s x s x j l m

φ θ γ τ

α θ γ τ θ γ τ ε
= =

= − +

+ − = =

∑ ∑

K

  (19) 

Again, due to the Implicit Function Theorem, the functions  ( )
jl

z x   have all derivatives 

with respect to the variables  , 1, ,
i

x i p= L   and therefore it is possible to calculate the gradient 

of the objective function (18): 

 

                                           
1 1

( ) ( ).
m m

jl jl

j l

f x w z x
= =

∇ = ∇∑∑                                            (20) 

where  
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( , )

( ) ( , ) / ,
jl

jl jl

jl

h x z
z x h x z

z

∂
∇ = −∇

∂
                                     (21) 

while  ( , )
jl

h x z∇   and  ( , ) /
jl jl

h x z z∂ ∂   are directly obtained from equations (1), (2) and (19).  

This way, it is easy to solve problem (18) by making use of any method based on first 

order derivative information. Finally, it must be emphasized that problem (18) is defined on a  

(2p)-dimensional  space, so it is a small problem, since the number of hubs,  p,  is small, in 

general, for real world applications. 

 

Gesteira (2012)  and  Xavier et al (2012)  introduce the use of the FE approach to solve 

the continuous hub location problem. It is  presented  computational results for instances up to 

1000 cities or about 500000 different origin-destination pairs. The number of hubs reaches the 

value  p=5,  which implies 12.5 million different path connections  jabl,  see Figure 2.  Contreras 

et al (2011)  consider a discrete hub location problem and solve problems up to 500 cities.  To the 

best knowledge of these authors:  the new instances are by far the largest and most difficult ever 

solved for any type of hub location problem.  

Below in  Table  4  we reproduce the computational results obtained for solving the 

largest instance. The numerical experiments have been carried out on a PC Intel Celeron with a 

2.7GHz CPU  and  512MB RAM.  The first column presents the specified number of hubs  (p).   

The second column presents the best objective function value  
BestFE

f   produced by the FE 

method in 10 tentatives.  The next three columns present the number of occurrences of the best 

solution  (Occur.),  the  percentage average deviation  of the  T  solutions  MeanE   in relation to 

the best solution obtained  
BestFE

f   and the  CPU mean time given in seconds  MeanTime .  The low 

values in the column  MeanE   show unequivocally the consistence of the FE algorithm.  As there 

is not any recorded result for this instance  the obtained  values for objective function and CPU 

time are a challenge for future research.  

 

q  
BestFE

f  Occur. MeanE  MeanTime  

2 0.342083E12 10 0.00 376.66 

3 0.285747E12 10 0.00 1296.32 

4 0.263992E12 9 0.07 3754.33 

5 0.248652E12 4 0.35 8234.88 

Table 4: Hub Location Problem - dsj1000 TSPLIB instance ( 0.5α = ) 

 

 
8. Conclusions 
 

This article presents a general review of successful applications of the FE approach for 

solving a select set of five important problems. For each problem, the performance of the FE 

approach can be attributed to the complete differentiable formulation, therefore powerful 

optimization methods can be applied for solve them.  Furthermore, the FE has the convexification 

feature that eliminate a lot of local minima points.  

In short, computational experiments for all related problems obtained results, which 

exhibited a high level of performance of the  FE approach according to the different criteria of 

consistency, robustness and efficiency.  The robustness,  consistency and efficiency performances  

can be attributed to the complete differentiability of the  approach. Based on the success of these 

previous experiences, we believe that the FE methodology can also be used for solving a broad 
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class of non-smooth problems with similar characteristics, like those contemplated in the seminal 

survey written by  Rubinov (2006). 
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