# On the sum of the two largest signless Laplacian eigenvalues 

Paula Rama ${ }^{1}$, Maria Paula Carvalho ${ }^{1}$, Carla Oliveira ${ }^{2,3}$ and Leonardo de $L^{2} \mathrm{ma}^{3}$

${ }^{1}$ CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Portugal
${ }^{2}$ Departamento de Matemática, Escola Nacional de Ciências Estatísticas ${ }^{3}$ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Programa de Pós-Graduação em Tecnologia


#### Abstract

Let $G$ be a simple graph on $n$ vertices and $m$ edges. Consider $L(G)=D-A$ and $Q(G)=D+A$ as the Laplacian and the signless Laplacian of $G$, where $A$ is the adjacency matrix and $D$ is the diagonal matrix of the vertices degree of $G$. Brouwer conjectured that the sum of the $k$ largest Laplacian eigenvalues of G is at most $m+\binom{k+1}{2}$. Haemers et. al. in 2010 proved that this result is valid for $k=2$. In this paper, we investigate this problem for the signless Laplacian matrix when $k=1$ and $k=2$.


Keywords: signless Laplacian; sum of eigenvalues; bounds.

## 1 Introduction

Given a simple graph $G$ with vertex set $V(G)$ and edge set $E(G)$, write $A$ for the adjacency matrix of $G$ and let $D$ be the diagonal matrix of the row-sums of $A$, i.e., the degrees of $G$. The maximum degree of $G$ is denoted by $\Delta=\Delta(G)$. Let $e(G)=|E(G)|$ be the number of edges and let $n=|V(G)|$ be the number of vertices of $G$. If $H$ is a subgraph of $G$, we write $n_{H}$ for the number of vertices of $H$. The matrix $Q(G)=A+D$ is called the signless Laplacian or the $Q$-matrix of $G$. As usual, we shall index the eigenvalues of $Q(G)$ in non-increasing order and denote them as $q_{1} \geq q_{2} \geq \ldots \geq q_{n}$. The Laplacian matrix of $G$ is given by $L(G)=D-A$ and its eigenvalues are also arranged in non-increasing order
and we denote them as $\mu_{1} \geq \ldots \geq \mu_{n-1} \geq \mu_{n}=0$. We denote $\bar{G}$ as the complement graph of $G$, and denote $K_{n}, C_{n}, S_{n}$ as the complete, cycle and star graphs on $n$ vertices.

Consider $M(G)$ as the adjacency, Laplacian or signless Laplacian matrix of a graph $G$ of order $n$ and let $k$ be a natural number such that $1 \leq k \leq n$. A general question related to $G$ and $M(G)$ can be raised: "How large can be the sum of the $k$ largest eigenvalues of $M(G)$ ?"

In [6], Ebrahimi et al., bounded the sum of the two largest eigenvalues of the adjacency matrix. In [9], Haemers, Mohammadian and Tayfeh-Rezaie presented Brouwer's conjecture for the sum of the $k$ largest eigenvalues of the Laplacian matrix.

Conjecture 1.1 Let $G$ be a graph on e $(G)$ edges. Then,

$$
\begin{equation*}
S_{k}(G)=\sum_{i=1}^{k} \mu_{i}(G) \leq e(G)+\binom{k+1}{2} . \tag{1}
\end{equation*}
$$

Haemers, Mohammadian and Tayfeh-Rezaie, [9], solved Conjecture 1.1 for every $k$ when $G$ is a tree and also for every graph $G$ when $k=2$. More recently, Du and Zhou [3] proved that the conjecture is true for unicyclic and bicyclic graphs. It turns out that the same upper bound of the Conjecture 1.1 seems to be true to the sum of the $k$ largest eigenvalues of the signless Laplacian of a graph $G$, denoted by $T_{k}(G)$. We state that as a conjecture and it drives our motivation throughout this paper.

Conjecture 1.2 Let $G$ be a graph on $e(G)$ edges. Then,

$$
T_{k}(G)=\sum_{i=1}^{k} q_{i}(G) \leq e(G)+\binom{k+1}{2} .
$$

Observe that Conjecture 1.2 is true for every simple graph $G$ when $k=n$ and $k=n-1$. It is possible to determine some classes of graphs that satisfy Conjecture 1.2 for $k=2$. See for instance the regular graphs. If $G$ is $r$-regular, then $q_{i}(G)=2 r-\mu_{n-i+1}(G)$ for each $i=1,2, \cdots, n$. Thus, for $n \geq 8, T_{2}(G)=4 r-\mu_{n-1}(G) \leq e(G)+3$, since for $n \geq 8$, $4 r-\mu_{n-1}(G) \geq e(G)+3$ if and only if $2 \mu_{n-1}(G) \leq(8-n) r-6<0$, which implies that $\mu_{n-1}<0$, and it is a contradiction. However, the proof of the general conjecture is not trivial. In this paper, we devote our attention to prove the cases: $k=1$ for any graph $G$ and $k=2$ to the unicyclic graphs.

Moreover, from the Conjectures 1.1 and 1.2, one can raise the following question: is that possible to compare $S_{k}$ and $T_{k}$ ? It is known that $q_{1}(G) \geq \mu_{1}(G)$, [1], and so $T_{1}(G)$ is always greater than or equal to $S_{1}(G)$. For $k=n, T_{n}(G)=S_{n}(G)=2 m$. However,
if we take the complete graph $K_{5}$ and the cycle graph of 5 vertices plus one edge as $G_{1}$, we obtain $T_{2}\left(K_{5}\right)>S_{2}\left(K_{5}\right)$ and $T_{2}\left(G_{1}\right)<S_{2}\left(G_{1}\right)$, and then for $k=2, S_{2}$ and $T_{2}$ are incomparable. Therefore, we cannot guarantee that $S_{k}$ is bounded above by $T_{k}$ for $k=3, \ldots, n-1$. This fact shows that finding upper bounds to these two parameters can be relevant.

## 2 Preliminary results

Let us consider a Hermitian matrix $A$ and its eigenvalues as $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ arranged in non-increasing order. Recall that Ky Fan, in [7], proved an interesting inequality relating the sum of the eigenvalues of two symmetric matrices, $A$ and $B$, to the eigenvalues of the matrix $A+B$. That result is important for our purposes in this paper and we shall use it in order to prove our main result, Theorems 3.8.

Theorem 2.1 ([7]) Let $A$ and $B$ be two real symmetric matrices of size $n$. Then for any $1 \leq k \leq n$,

$$
\sum_{i=1}^{k} \lambda_{i}(A+B) \leq \sum_{i=1}^{k} \lambda_{i}(A)+\sum_{i=1}^{k} \lambda_{i}(B),
$$

where, for a matrix $M, \lambda_{i}(M)$ denotes the largest $i$-th eigenvalue of $M$.
From Ky Fan theorem we prove Propositions 2.2 and 2.3 as it has been done by Du and Zhou in [3] for the Laplacian matrix.

Proposition 2.2 ([3]) Let $H$ be a subgraph of a graph $G$ and $n_{H} \geq 2$ vertices. Then

$$
T_{k}(G) \leq T_{k}(H)+2(e(G)-e(H))
$$

for $1 \leq k \leq n_{H}$.

Proposition 2.3 ([3]) Let $G$ be a graph with $e(G)$ edges and maximum degree $\Delta \geq 2$. Then

$$
T_{k}(G) \leq 2 e(G)-\Delta(G)+k
$$

for $1 \leq k \leq \Delta-1$.

Following, we present an upper bound to $T_{k}(G)$ as a function of the clique number of $G$.

Proposition 2.4 Let $G$ be a graph with clique number $\omega \geq 3$. Then

$$
T_{k}(G) \leq 2 e(G)-2 k+\omega(k+2-\omega),
$$

for $1 \leq k \leq \Delta-1$.

Proof From Proposition 2.2 follows

$$
\begin{aligned}
T_{k}(G) & \leq T_{k}\left(K_{\omega}\right)+2\left(e(G)-\binom{\omega}{2}\right) \\
& =k \omega+\omega-2 k+2\left(e(G)-\binom{\omega}{2}\right) \\
& =2 e(G)-2 k+\omega(k+2-\omega)
\end{aligned}
$$

Let $G_{1}$ and $G_{2}$ be vertex disjoint graphs. We denote by $G_{1} \sim G_{2}$ a graph obtained from $G_{1}$ and $G_{2}$ by connecting a vertex of $G_{1}$ to a vertex of $G_{2}$ with an edge. Also, let $G_{1} \approx G_{2}$ the graph obtained from $G_{1}$ and $G_{2}$ by inserting two edges between $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$. The next two lemmas prove that Conjecture 1.2 is true for the graphs resulting from those operations if the conjecture is true for $G_{1}$ and $G_{2}$. The proof follows from Lemma 2.6 and Lemma 2.7 due to Wang, Huang and Liu in [11].

Lemma 2.5 Let $G_{1}$ and $G_{2}$ be two graphs of order $n_{1}$ and $n_{2}$ and size $e\left(G_{1}\right)$ and $e\left(G_{2}\right)$, respectively. If $e\left(G_{i}\right) \geq 1$ and $T_{k_{i}}\left(G_{i}\right) \leq e\left(G_{i}\right)+\binom{k_{i}+1}{2}$ for $k_{i}=1,2, \cdots, n_{i}$ and $i=1,2$, then for $1 \leq k \leq n_{1}+n_{2}$,

$$
T_{k}\left(G_{1} \sim G_{2}\right) \leq e\left(G_{1} \sim G_{2}\right)+\binom{k+1}{2} .
$$

Lemma 2.6 Let $G_{1}$ and $G_{2}$ be two graphs of order $n_{1}$ and $n_{2}$, respectively. If $e\left(G_{i}\right) \geq 2$ and $T_{k_{i}}\left(G_{i}\right) \leq e\left(G_{i}\right)+\binom{k_{i}+1}{2}$ for $k_{i}=1,2, \cdots, n_{i}$ and $i=1,2$, then for $1 \leq k \leq n_{1}+n_{2}$,

$$
T_{k}\left(G_{1} \approx G_{2}\right) \leq e\left(G_{1} \approx G_{2}\right)+\binom{k+1}{2} .
$$

## 3 Main results

We begin this section proving Conjecture 1.2 for any graph when $k=1$.

Theorem 3.1 Let $G$ be a graph of size e $(G)$. Then

$$
T_{1}(G)=q_{1}(G) \leq e(G)+1
$$

Equality holds if and only if $G$ is isomorphic to $S_{n}$.

Proof Consider $G$ as graph on $n$ vertices and $e(G)$ edges. We shall prove the theorem in two parts: in (A) we assume $G$ is connected and in (B) $G$ is disconnected. Let us start proving part (A). It is easy to check that all connected graphs on $1 \leq n \leq 4$ satisfy $q_{1} \leq e(G)+1$. As proved in [10] and [4], $q_{1}(G)$ of connected graphs on $n \geq 5$ is bounded above by

$$
\begin{equation*}
q_{1}(G) \leq \frac{2 e(G)}{n-1}+n-2, \tag{2}
\end{equation*}
$$

with equality if and only if $G$ is isomorphic to $K_{n}$ or $S_{n}$.
Using inequality (2) and considering $n \geq 5$, we get

$$
\begin{aligned}
q_{1}-(e(G)+1) & \leq \frac{2 e(G)}{n-1}+n-2-(e(G)+1) \\
& =\frac{2 e(G)+(n-e(G)-3)(n-1)}{n-1} \\
& =\frac{2 e(G)+(n-e(G)-1)(n-1)-2(n-1)}{n-1} \\
& =\frac{2(e(G)-n+1)+(n-e(G)-1)(n-1)}{n-1} \\
& =\frac{(n-e(G)-1)(n-3)}{n-1} \\
& \leq 0 .
\end{aligned}
$$

This proves the part (A) of the theorem. Now, consider that $G$ is disconnected and has at leat two connected components. Assume that the index of $G$ comes from a component $G_{i}$ of $G$, say $G_{1}$, with $e\left(G_{1}\right)$ edges. Applying the result obtained at part (A) to this connected component, we have $q_{1} \leq e\left(G_{1}\right)+1 \leq e(G)+1$. It proves the part (B) of the theorem. Equality case is obtained from equality conditions to the inequality (2) and it completes the proof of the theorem.

We checked Conjecture 1.2 for all graphs with at most seven vertices when $k=2$ and the following lemma is stated as a result of the computational experiments.

Lemma 3.2 If $G$ is a graph of order $n \leq 7$ and size $m$ then $T_{2}(G) \leq e(G)+3$.

It is easy to see that if Conjecture 1.2 holds to disconnected graphs, it also holds for connected graphs. The proof follows from Wang, Huang and Liu, [11], in Lemma 2.2.

In [12], Yan proved that if $G$ is a graph on $n \geq 2$ vertices, then $q_{1}(G) \leq 2 n-2$ and $q_{2}(G) \leq n-2$. Also, Yan also proved that the complete graphs are extremal to the first upper bound but are not the only ones. Recently, de Lima and Nikiforov, [2], characterized all graphs for which $q_{2}(G)$ is equal to $n-2$. Therefore, a natural upper bound to $q_{1}(G)+q_{2}(G)$ of a graph $G$ is $3 n-4$ and the Conjecture 1.2 is true for graphs on $n \geq 2$ which the number of edges $e(G)$ are at most $3 n-7$. Moreover, since $T_{n}(G)=2 e(G)$, it is reasonable to think that dense graphs satisfies Conjecture 1.2 and this is proved in the next result.

Lemma 3.3 Let $G$ be a connected graph of order $n \geq 5$ and size $e(G) \geq 2 n-3$. Then $T_{2}(G) \leq e(G)+3$.

Proof Consider $e(G) \geq 2 n-1$. Since $q_{1} \leq \frac{4 m}{n}+n-4+\frac{4}{n}$, as proved in [8], and $q_{2}(G) \leq n-2$, it follows that

$$
\begin{aligned}
T_{2}(G)-(e(G)+3) & \leq \frac{4 e(G)}{n}+n-4+\frac{4}{n}+n-2-e(G)-3 \\
& =\frac{-e(G) n+4 e(G)+2 n^{2}-9 n+4}{n} \\
& =\frac{-e(G)(n-4)+(2 n-1)(n-4)}{n} \\
& =\frac{(n-4)(2 n-e(G)-1)}{n} \\
& \leq 0 .
\end{aligned}
$$

Now, let us consider $e(G) \in\{2 n-3,2 n-2\}$. Using $q_{1}(G) \leq \frac{2 e(G)}{n-1}+n-2$ that can be obtained from [10] and [4], it follows that

$$
\begin{aligned}
T_{2}(G)-(e(G)+3) & \leq \frac{2 e(G)}{n-1}+n-2+n-2-e(G)-3 \\
& \leq 2 n-e(G)-3 \\
& \leq 0,
\end{aligned}
$$

and the proof is completed.
Let $H$ be a subgraph of $G$. We shall write $G \backslash H$ for the subgraph obtained by removing the edges of $H$.

Lemma 3.4 If $G$ is a unicyclic graph of order $n$ and girth $g \in\{4,6\}$ or $g \geq 8$, then $T_{2}(G) \leq e(G)+3$.

Proof Firstly, if $G$ is an unicyclic graph with even girth, then $G$ is bipartite. Since the Laplacian and signless Laplacian spectrum coincides, using the result proved by Haemers et al. in [9] the result follows.

Hence, consider $G$ as an unicyclic graph with odd girth $g$ and denote the induced cycle by $C_{g}$ such that $e\left(C_{g}\right)=g$. It is well-known that $q_{1}\left(C_{g}\right)=4$ and $q_{2}\left(C_{g}\right)=2+2 \cos \left(\frac{2 \pi}{g}\right)$ and then $T_{2}\left(C_{g}\right)=6+2 \cos \left(\frac{2 \pi}{g}\right)$. The graph $G \backslash C_{g}$ obtained by removing the edges of $C_{g}$ from $G$ is bipartite and from Haemers et al., it also satisfies $T_{2}\left(G \backslash C_{g}\right) \leq n-g+3$.

From Theorem 2.1,

$$
\begin{aligned}
T_{2}(G) & \leq T_{2}\left(C_{g}\right)+T_{2}\left(G \backslash C_{g}\right) \\
& \leq\left(6+2 \cos \left(\frac{2 \pi}{g}\right)\right)+n-g+3 \\
& \leq(8-g)+(n+3) .
\end{aligned}
$$

Thus, for $g \geq 8$, we get $T_{2}(G) \leq n+3=e(G)+3$ and the result follows.

Lemma 3.5 If $G$ is a unicyclic graph of order $n$ without pendant edges attached to the vertices of the cycle then $T_{2}(G) \leq e(G)+3$.

Proof Let $C_{g}$ be the cycle of $G$ with order $g$ and let $G-C_{g}$ be the graph obtained from $G$ by removing the vertices of the cycle $C_{g}$. So, $G-C_{g}$ has $1 \leq t \leq p$ connected components denoted by $H_{1}, \ldots, H_{p}$ and we can write $G$ isomorphic to $\left(\left(\left(C_{g} \sim H_{1}\right) \sim H_{2}\right) \sim \cdots \sim H_{p}\right)$. From Lemma 2.5, the results follows since $T_{2}\left(C_{g}\right) \leq e\left(C_{g}\right)+3$ and $T_{2}\left(H_{i}\right) \leq e\left(H_{i}\right)+3$ for each $i=1, \ldots p$.

Lemma 3.6 Let $G$ be a unicyclic graph of order $n \geq 4$ with girth $g \in\{3,5,7\}$ and $n-g$ pendant vertices. Then $T_{2}(G) \leq e(G)+3$.

Proof Let $C_{g}$ be the cycle of $G$ induced by the vertex set $V\left(C_{g}\right)=\left\{u_{1}, \ldots, u_{g}\right\}$ and each vertex $u_{i} \in V\left(C_{g}\right)$ has $r_{i} \geq 0$ pendant vertices for $i=1, \ldots, g$. Our proof consider the following three cases.
Case (A): Assume $g=3$ and let $V\left(C_{3}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$.
(i) Consider that $r_{1}=n-3$ and $r_{2}=r_{3}=0$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(S_{n}\right)+$ $T_{2}\left(K_{2}\right) \leq n+3=e(G)+3 ;$
(ii) Consider that $r_{1}=0$ and $r_{2} \geq r_{3} \geq 1$. Define $G_{1}$ as the star $S_{r_{2}+1}$ rooted in $u_{2}$ and $G_{2}$ as the star $S_{r_{3}+1} \sim H$ rooted in $u_{3}$ such that $H$ is the subgraph of $G$ induced by the vertex $u_{1}$. From Lemma 2.6, $T_{2}(G)=T_{2}\left(G_{1} \approx G_{2}\right) \leq e\left(G_{1} \approx G_{2}\right)+3=e(G)+3$;
(iii) Consider that $r_{1} \geq r_{2} \geq r_{3} \geq 1$. The subgraph $G \backslash C_{3}$ is isomorphic to $S_{r_{1}+1} \cup$ $S_{r_{2}+1} \cup S_{r_{3}+1}$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(C_{5}\right)+T_{2}\left(S_{r_{1}+1} \cup S_{r_{2}+1} \cup S_{r_{3}+1}\right)=$ $5+r_{1}+1+r_{2}+1<e(G)+3$.

Case (B): Assume $g=5$ and let $V\left(C_{5}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$.
(i) Consider that $r_{i} \geq 1$ for $i=1, \ldots, 5$. Note that $G \backslash C_{5}$ is isomorphic to the forest $\cup_{i=1}^{5} S_{r_{i}+1}$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(C_{5}\right)+T_{2}\left(\cup_{i=1}^{5} S_{r_{i}+1}\right) \leq e\left(C_{5}\right)+3+r_{1}+$ $1+r_{2}+1=r_{1}+r_{2}+10<e(G)+3$. If there exists one vertex $u_{j}$ such that $r_{j}=0$ and $r_{i} \geq 1$ for every $i \neq j$, the proof is identical to the previous case.
(ii) Assume that $r_{1}=n-5$ and $r_{i}=0$ for each $i=2, \ldots, 5$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(S_{n-4} \cup 2 K_{2}\right)+T_{2}\left(S_{3} \cup K_{2}\right)=n+3=e(G)+3$.
(iii) Assume that there exist two vertices $u_{i}$ and $u_{j}$ such that $r_{i} \geq r_{j} \geq 1$ and $r_{s}=0$ for $s \neq i, j$. Note that $G \backslash C_{5}$ is isomorphic to $S_{r_{i}+1} \cup S_{r_{j}+1} \cup 3 K_{1}$. Next, we consider the two possible subcases, that is, $j=i+1$ and $j=i+2$.
(a) Let $j=i+1$. If $r_{j}=1$, from Theorem 2.1, $T_{2}(G) \leq T_{2}\left(S_{r_{i}+1} \cup S_{3} \cup K_{2}\right)+T_{2}\left(S_{3} \cup\right.$ $\left.K_{2}\right)=\left(r_{i}+1+3\right)+(3+2)=\left(5+r_{i}+1\right)+3=n+3$. If $r_{j} \geq 2$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(S_{r_{i}+1} \cup S_{r_{j}+1} \cup S_{3}\right)+T_{2}\left(P_{4}\right) \leq\left(r_{i}+r_{j}+2\right)+6=\left(r_{i}+r_{j}+5\right)+3=n+3$.
(b) Let $j=i+2$. Consider the graphs $G_{1}$ and $G_{2}$ that are isomorphic to $S_{r_{i}+2}$ and $S_{r_{j}+3}$, respectively. Observe that $G_{1} \approx G_{2}$ is isomorphic to $G$ and both satisfy Conjecture 1.2 since they are trees. From Lemma 2.6, $T_{2}(G)=T_{2}\left(G_{1} \approx G_{2}\right) \leq$ $e\left(G_{1} \approx G_{2}\right)+3=e(G)+3 ;$
(iv) Consider that only $r_{i}, r_{j}$ and $r_{t}$ are non-zero such that $r_{i} \geq r_{j} \geq r_{t} \geq 1$. There are only two possibilities:
(a) Let $j=i+1$ and $t=i+2$. In this case, the subgraph $G \backslash C_{5}$ is isomorphic to $S_{r_{i}+1} \cup S_{r_{i+1}+1} \cup S_{r_{i+2}+1} \cup 2 K_{1}$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(S_{r_{i}+1} \cup S_{r_{i+1}+1} \cup\right.$ $\left.S_{r_{i+2}+1} \cup K_{2}\right)+T_{2}\left(P_{5}\right)<\left(r_{i}+r_{i+1}+2\right)+(4+3) \leq n+3=e(G)+3$.
(b) Let $j=i+1$ and $t=i+3$. In this case, the subgraph $G \backslash C_{5}$ is isomorphic to $S_{r_{i}+1} \cup S_{r_{i+1}+1} \cup S_{r_{i+3}+1} \cup 2 K_{1}$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(S_{r_{i}+2} \cup S_{3}\right)+$ $T_{2}\left(S_{r_{i+1}+2} \cup S_{r_{i+3}+1} \cup K_{2}\right) \leq\left(r_{i}+2+3\right)+\left(r_{i+1}+1+r_{i+3}+2\right)=n+3=e(G)+3$.

Case (C): Assume $g=7$ and let $V\left(C_{7}\right)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$.
(i) Consider that there exist $t \geq 3$ at least three vertices such that $r_{i} \neq 0$, say $r_{i} \geq r_{j} \geq$ $\ldots \geq r_{t}$. The subgraph $G \backslash C_{7}$ is isomorphic to $\left(\bigcup_{i=1}^{t} S_{r_{i}+1}\right) \cup(7-t) K_{1}$. From Theorem 2.1, $T_{2}(G) \leq T_{2}\left(C_{7}\right)+T_{2}\left(\left(\bigcup_{i=1}^{t} S_{r_{i}+1}\right) \cup(7-t) K_{1}\right)<8+\left(r_{i}+1+r_{j}+1\right)<n+3$.
(ii) Consider that there exist $u_{i}$ such that $r_{i}=n-7$. Applying Theorem 2.1, we get $T_{2}(G) \leq T_{2}\left(S_{n-6} \cup 3 K_{2}\right)+T_{2}\left(S_{3} \cup 2 K_{2}\right)=(n-6+2)+(3+2)=n+1<n+3$.
(iii) Consider that there exist $u_{i}$ and $u_{j}$ such that $r_{i} \geq r_{j} \geq 1$ and $r_{i}+r_{j}=n-7$. Note that $G \backslash C_{7}$ is isomorphic to $S_{r_{i}+1} \cup S_{r_{j}+1} \cup 5 K_{1}$. From Theorem 2.1 we get $T_{2}(G) \leq T_{2}\left(C_{7}\right)+T_{2}\left(S_{r_{i}+1} \cup S_{r_{j}+1} \cup 5 K_{1}\right)<8+r_{i}+r_{j}+2=n+3$.

These cases complete the proof.

Lemma 3.7 If $G$ is a unicyclic graph of order $n \geq 4$ with girth $g \in\{3,5,7\}$ that has not only pendant edges attached to the vertices of the cycle. Then $T_{2}(G) \leq e(G)+3$.

Proof Suppose that $G$ is a unicyclic graph of order $n \geq 4$ with girth $g \in\{3,5,7\}$ that has not only pendant edges attached to the vertices of the cycle. Consider each connected component $H_{i}$ of the graph $G-C_{g}$ for $i=1, \ldots, p$ that is a tree and the graphs $H_{1} \sim C_{g},\left(H_{1} \sim C_{g}\right) \sim H_{2}, \ldots,\left(\left(H_{1} \sim C_{g}\right) \sim H_{2}\right) \sim \ldots \sim H_{p}$. From Lemmas 2.5 and 3.6, inequality of the Conjecture 1.2 holds for each of the previous graphs. Since the last graph is isomorphic to $G$, the result follows.

Now, our main result follows from Lemmas 3.4, 3.5, 3.6 and 3.7.
Theorem 3.8 If $G$ is a unicyclic graph of order $n$ then $T_{2}(G) \leq e(G)+3$.

Acknowledgements: The authors Paula Rama and Maria Paula Carvalho had this work supported in part by FEDER funds through COMPETE-Operational Programme Factors of Competitiveness ("Programa Operacional Factores de Competitividade") and by Portuguese funds through the Center for Research and Development in Mathematics and Applications (University of Aveiro) and the Portuguese Foundation for Science
and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), within project PEstC/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. Leonardo de Lima has been supported by CNPq Grant 305867/2012-1 and Carla Oliveira has also been supported by CNPq Grant 305454/2012-9.

## References

[1] D. Cevtković. P Rowlinson, S.K. Simić, Eigenvalue bounds for the signless Laplacian, Publ. Inst. Math. (Beograd) 95 (2007) n.81, 11-27.
[2] de Lima, L. S. and Nikiforov, V., On the second largest eigenvalue of the signless Laplacian, Linear Algebra Appl., 438 (2013), 1215-1222.
[3] Z. Du, B. Zhou, Upper bounds for the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl., 436 (2012), 3672-3683.
[4] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Mathematics 285 (2004) 57-66.
[5] K. C. Das, The Laplacian spectrum of a graph, Computers and Mathematics with Applications 48 5-6 (2004) 715-724.
[6] J. Ebrahimi, B. Mohar, V. Nikiforov, A. S. Ahmady, On the sum of two largest eigenvalues of a symmetric matrix, Linear Algebra Appl. 429 (2008), 2781-2787.
[7] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. USA 35 (1949) 652-655.
[8] L. Feng, G. Yu, On three conjectures envolving the signless Laplacian spectral radius of graphs, Publications de L'institut mathématique, Nouvelle série (2009) n.85(99), 35-38.
[9] W.H. Haemers, A. Mohammadian, B. Tayfeh-Rezaie, On the sum of Laplacian eigenvalues of graphs, Linear Algebra Appl. 432 (2010), 2214-2221.
[10] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl., 285 (1998) 33-35.
[11] S. Wang, Y. Huang, B. Liu, On a conjecture for the sum of Laplacian eigenvalues, Mathematical and Computer Modelling 56 (2012) 60-68.

Simpósio Brasileiro de Pesquisa Operacional
[12] C. Yan, Properties of spectra of graphs and line graphs, Appl. Math. J. Chinese Univ. Ser. B 3 (2002), 371-376.

