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2Departamento de Matemática, Escola Nacional de Ciências Estat́ısticas

3Centro Federal de Educação Tecnológica Celso Suckow da Fonseca,
Programa de Pós-Graduação em Tecnologia

Abstract

Let G be a simple graph on n vertices and m edges. Consider L(G) = D − A
and Q(G) = D + A as the Laplacian and the signless Laplacian of G, where A
is the adjacency matrix and D is the diagonal matrix of the vertices degree of G.
Brouwer conjectured that the sum of the k largest Laplacian eigenvalues of G is at
most m+

(
k+1
2

)
. Haemers et. al. in 2010 proved that this result is valid for k = 2.

In this paper, we investigate this problem for the signless Laplacian matrix when
k = 1 and k = 2.
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1 Introduction

Given a simple graph G with vertex set V (G) and edge set E(G), write A for the adjacency

matrix of G and let D be the diagonal matrix of the row-sums of A, i.e., the degrees of G.

The maximum degree of G is denoted by Δ = Δ(G). Let e(G) = |E(G)| be the number

of edges and let n = |V (G)| be the number of vertices of G. If H is a subgraph of G, we

write nH for the number of vertices of H. The matrix Q (G) = A+D is called the signless

Laplacian or the Q-matrix of G. As usual, we shall index the eigenvalues of Q (G) in

non-increasing order and denote them as q1 ≥ q2 ≥ . . . ≥ qn. The Laplacian matrix of G

is given by L(G) = D − A and its eigenvalues are also arranged in non-increasing order
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and we denote them as μ1 ≥ . . . ≥ μn−1 ≥ μn = 0. We denote G as the complement graph

of G, and denote Kn, Cn, Sn as the complete, cycle and star graphs on n vertices.

Consider M(G) as the adjacency, Laplacian or signless Laplacian matrix of a graph G

of order n and let k be a natural number such that 1 ≤ k ≤ n. A general question related

to G and M(G) can be raised: “How large can be the sum of the k largest eigenvalues of

M(G) ?”

In [6], Ebrahimi et al., bounded the sum of the two largest eigenvalues of the adja-

cency matrix. In [9], Haemers, Mohammadian and Tayfeh-Rezaie presented Brouwer’s

conjecture for the sum of the k largest eigenvalues of the Laplacian matrix.

Conjecture 1.1 Let G be a graph on e(G) edges. Then,

Sk(G) =
k∑

i=1

μi(G) ≤ e(G) +

(
k + 1
2

)
. (1)

Haemers, Mohammadian and Tayfeh-Rezaie, [9], solved Conjecture 1.1 for every k

when G is a tree and also for every graph G when k = 2. More recently, Du and Zhou

[3] proved that the conjecture is true for unicyclic and bicyclic graphs. It turns out that

the same upper bound of the Conjecture 1.1 seems to be true to the sum of the k largest

eigenvalues of the signless Laplacian of a graph G, denoted by Tk(G). We state that as a

conjecture and it drives our motivation throughout this paper.

Conjecture 1.2 Let G be a graph on e(G) edges. Then,

Tk(G) =
k∑

i=1

qi(G) ≤ e(G) +

(
k + 1
2

)
.

Observe that Conjecture 1.2 is true for every simple graph G when k = n and k = n−1.

It is possible to determine some classes of graphs that satisfy Conjecture 1.2 for k = 2.

See for instance the regular graphs. If G is r−regular, then qi(G) = 2r − μn−i+1(G) for

each i = 1, 2, · · · , n. Thus, for n ≥ 8, T2(G) = 4r − μn−1(G) ≤ e(G) + 3, since for n ≥ 8,

4r − μn−1(G) ≥ e(G) + 3 if and only if 2μn−1(G) ≤ (8− n)r − 6 < 0, which implies that

μn−1 < 0, and it is a contradiction. However, the proof of the general conjecture is not

trivial. In this paper, we devote our attention to prove the cases: k = 1 for any graph G

and k = 2 to the unicyclic graphs.

Moreover, from the Conjectures 1.1 and 1.2, one can raise the following question: is

that possible to compare Sk and Tk? It is known that q1(G) ≥ μ1(G), [1], and so T1(G)

is always greater than or equal to S1(G). For k = n, Tn(G) = Sn(G) = 2m. However,
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if we take the complete graph K5 and the cycle graph of 5 vertices plus one edge as

G1, we obtain T2(K5) > S2(K5) and T2(G1) < S2(G1), and then for k = 2, S2 and T2

are incomparable. Therefore, we cannot guarantee that Sk is bounded above by Tk for

k = 3, . . . , n− 1. This fact shows that finding upper bounds to these two parameters can

be relevant.

2 Preliminary results

Let us consider a Hermitian matrix A and its eigenvalues as λ1(A), . . . , λn(A) arranged in

non-increasing order. Recall that Ky Fan, in [7], proved an interesting inequality relating

the sum of the eigenvalues of two symmetric matrices, A and B, to the eigenvalues of the

matrix A+B. That result is important for our purposes in this paper and we shall use it

in order to prove our main result, Theorems 3.8.

Theorem 2.1 ([7]) Let A and B be two real symmetric matrices of size n. Then for any

1 ≤ k ≤ n,
k∑

i=1

λi(A+ B) ≤
k∑

i=1

λi(A) +
k∑

i=1

λi(B),

where, for a matrix M , λi(M) denotes the largest i-th eigenvalue of M .

From Ky Fan theorem we prove Propositions 2.2 and 2.3 as it has been done by Du

and Zhou in [3] for the Laplacian matrix.

Proposition 2.2 ([3]) Let H be a subgraph of a graph G and nH ≥ 2 vertices. Then

Tk(G) ≤ Tk(H) + 2(e(G)− e(H))

for 1 ≤ k ≤ nH .

Proposition 2.3 ([3]) Let G be a graph with e(G) edges and maximum degree Δ ≥ 2.

Then

Tk(G) ≤ 2e(G)−Δ(G) + k

for 1 ≤ k ≤ Δ− 1.

Following, we present an upper bound to Tk(G) as a function of the clique number of

G.
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Proposition 2.4 Let G be a graph with clique number ω ≥ 3. Then

Tk(G) ≤ 2e(G)− 2k + ω (k + 2− ω) ,

for 1 ≤ k ≤ Δ− 1.

Proof From Proposition 2.2 follows

Tk(G) ≤ Tk(Kω) + 2

(
e(G)−

(
ω
2

))

= kω + ω − 2k + 2

(
e(G)−

(
ω
2

))

= 2e(G)− 2k + ω(k + 2− ω)

�

Let G1 and G2 be vertex disjoint graphs. We denote by G1 ∼ G2 a graph obtained

from G1 and G2 by connecting a vertex of G1 to a vertex of G2 with an edge. Also, let

G1 ≈ G2 the graph obtained from G1 and G2 by inserting two edges between V (G1) and

V (G2). The next two lemmas prove that Conjecture 1.2 is true for the graphs resulting

from those operations if the conjecture is true for G1 and G2. The proof follows from

Lemma 2.6 and Lemma 2.7 due to Wang, Huang and Liu in [11].

Lemma 2.5 Let G1 and G2 be two graphs of order n1 and n2 and size e(G1) and e(G2),

respectively. If e(Gi) ≥ 1 and Tki(Gi) ≤ e(Gi) +
(
ki+1
2

)
for ki = 1, 2, · · · , ni and i = 1, 2,

then for 1 ≤ k ≤ n1 + n2,

Tk(G1 ∼ G2) ≤ e(G1 ∼ G2) +

(
k + 1

2

)
.

Lemma 2.6 Let G1 and G2 be two graphs of order n1 and n2, respectively. If e(Gi) ≥ 2

and Tki(Gi) ≤ e(Gi) +
(
ki+1
2

)
for ki = 1, 2, · · · , ni and i = 1, 2, then for 1 ≤ k ≤ n1 + n2,

Tk(G1 ≈ G2) ≤ e(G1 ≈ G2) +

(
k + 1

2

)
.

3 Main results

We begin this section proving Conjecture 1.2 for any graph when k = 1.
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Theorem 3.1 Let G be a graph of size e(G). Then

T1(G) = q1(G) ≤ e(G) + 1.

Equality holds if and only if G is isomorphic to Sn.

Proof Consider G as graph on n vertices and e(G) edges. We shall prove the theorem

in two parts: in (A) we assume G is connected and in (B) G is disconnected. Let us

start proving part (A). It is easy to check that all connected graphs on 1 ≤ n ≤ 4 satisfy

q1 ≤ e(G) + 1. As proved in [10] and [4], q1(G) of connected graphs on n ≥ 5 is bounded

above by

q1(G) ≤ 2e(G)

n− 1
+ n− 2, (2)

with equality if and only if G is isomorphic to Kn or Sn.

Using inequality (2) and considering n ≥ 5, we get

q1 − (e(G) + 1) ≤ 2e(G)

n− 1
+ n− 2− (e(G) + 1)

=
2e(G) + (n− e(G)− 3)(n− 1)

n− 1

=
2e(G) + (n− e(G)− 1)(n− 1)− 2(n− 1)

n− 1

=
2(e(G)− n+ 1) + (n− e(G)− 1)(n− 1)

n− 1

=
(n− e(G)− 1)(n− 3)

n− 1
≤ 0.

This proves the part (A) of the theorem. Now, consider that G is disconnected and has

at leat two connected components. Assume that the index of G comes from a component

Gi of G, say G1, with e(G1) edges. Applying the result obtained at part (A) to this

connected component, we have q1 ≤ e(G1) + 1 ≤ e(G) + 1. It proves the part (B) of the

theorem. Equality case is obtained from equality conditions to the inequality (2) and it

completes the proof of the theorem. �

We checked Conjecture 1.2 for all graphs with at most seven vertices when k = 2 and

the following lemma is stated as a result of the computational experiments.

Lemma 3.2 If G is a graph of order n ≤ 7 and size m then T2(G) ≤ e(G) + 3.
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It is easy to see that if Conjecture 1.2 holds to disconnected graphs, it also holds for

connected graphs. The proof follows from Wang, Huang and Liu, [11], in Lemma 2.2.

In [12], Yan proved that if G is a graph on n ≥ 2 vertices, then q1(G) ≤ 2n − 2

and q2(G) ≤ n − 2. Also, Yan also proved that the complete graphs are extremal to

the first upper bound but are not the only ones. Recently, de Lima and Nikiforov, [2],

characterized all graphs for which q2(G) is equal to n − 2. Therefore, a natural upper

bound to q1(G)+q2(G) of a graph G is 3n−4 and the Conjecture 1.2 is true for graphs on

n ≥ 2 which the number of edges e(G) are at most 3n−7. Moreover, since Tn(G) = 2e(G),

it is reasonable to think that dense graphs satisfies Conjecture 1.2 and this is proved in

the next result.

Lemma 3.3 Let G be a connected graph of order n ≥ 5 and size e(G) ≥ 2n − 3. Then

T2(G) ≤ e(G) + 3.

Proof Consider e(G) ≥ 2n − 1. Since q1 ≤ 4m
n

+ n − 4 + 4
n
, as proved in [8], and

q2(G) ≤ n− 2, it follows that

T2(G)− (e(G) + 3) ≤ 4e(G)

n
+ n− 4 +

4

n
+ n− 2− e(G)− 3

=
−e(G)n+ 4e(G) + 2n2 − 9n+ 4

n

=
−e(G)(n− 4) + (2n− 1)(n− 4)

n

=
(n− 4)(2n− e(G)− 1)

n
≤ 0.

Now, let us consider e(G) ∈ {2n − 3, 2n − 2}. Using q1(G) ≤ 2e(G)
n−1

+ n − 2 that can be

obtained from [10] and [4], it follows that

T2(G)− (e(G) + 3) ≤ 2e(G)

n− 1
+ n− 2 + n− 2− e(G)− 3

≤ 2n− e(G)− 3

≤ 0,

and the proof is completed. �

LetH be a subgraph of G. We shall write G\H for the subgraph obtained by removing

the edges of H.
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Lemma 3.4 If G is a unicyclic graph of order n and girth g ∈ {4, 6} or g ≥ 8, then

T2(G) ≤ e(G) + 3.

Proof Firstly, if G is an unicyclic graph with even girth, then G is bipartite. Since the

Laplacian and signless Laplacian spectrum coincides, using the result proved by Haemers

et al. in [9] the result follows.

Hence, consider G as an unicyclic graph with odd girth g and denote the induced cycle

by Cg such that e(Cg) = g. It is well-known that q1(Cg) = 4 and q2(Cg) = 2 + 2 cos(2π
g
)

and then T2(Cg) = 6+ 2 cos(2π
g
). The graph G \Cg obtained by removing the edges of Cg

from G is bipartite and from Haemers et al., it also satisfies T2(G \ Cg) ≤ n− g + 3.

From Theorem 2.1,

T2(G) ≤ T2(Cg) + T2(G \ Cg)

≤
(
6 + 2 cos(

2π

g
)

)
+ n− g + 3

≤ (8− g) + (n+ 3).

Thus, for g ≥ 8, we get T2(G) ≤ n+ 3 = e(G) + 3 and the result follows. �

Lemma 3.5 If G is a unicyclic graph of order n without pendant edges attached to the

vertices of the cycle then T2(G) ≤ e(G) + 3.

Proof Let Cg be the cycle of G with order g and let G−Cg be the graph obtained from G

by removing the vertices of the cycle Cg. So, G−Cg has 1 ≤ t ≤ p connected components

denoted byH1, . . . , Hp and we can write G isomorphic to (((Cg ∼ H1) ∼ H2) ∼ · · · ∼ Hp) .

From Lemma 2.5, the results follows since T2(Cg) ≤ e(Cg) + 3 and T2(Hi) ≤ e(Hi) + 3 for

each i = 1, . . . p. �

Lemma 3.6 Let G be a unicyclic graph of order n ≥ 4 with girth g ∈ {3, 5, 7} and n− g

pendant vertices. Then T2(G) ≤ e(G) + 3.

Proof Let Cg be the cycle of G induced by the vertex set V (Cg) = {u1, . . . , ug} and each

vertex ui ∈ V (Cg) has ri ≥ 0 pendant vertices for i = 1, . . . , g. Our proof consider the

following three cases.

Case (A): Assume g = 3 and let V (C3) = {u1, u2, u3}.
(i) Consider that r1 = n − 3 and r2 = r3 = 0. From Theorem 2.1, T2(G) ≤ T2(Sn) +

T2(K2) ≤ n+ 3 = e(G) + 3;
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(ii) Consider that r1 = 0 and r2 ≥ r3 ≥ 1. Define G1 as the star Sr2+1 rooted in u2 and

G2 as the star Sr3+1 ∼ H rooted in u3 such that H is the subgraph of G induced by

the vertex u1. From Lemma 2.6, T2(G) = T2(G1 ≈ G2) ≤ e(G1 ≈ G2)+3 = e(G)+3;

(iii) Consider that r1 ≥ r2 ≥ r3 ≥ 1. The subgraph G \ C3 is isomorphic to Sr1+1 ∪
Sr2+1 ∪ Sr3+1. From Theorem 2.1, T2(G) ≤ T2(C5) + T2(Sr1+1 ∪ Sr2+1 ∪ Sr3+1) =

5 + r1 + 1 + r2 + 1 < e(G) + 3.

Case (B): Assume g = 5 and let V (C5) = {u1, u2, u3, u4, u5}.

(i) Consider that ri ≥ 1 for i = 1, . . . , 5. Note that G \ C5 is isomorphic to the forest

∪5
i=1Sri+1. From Theorem 2.1, T2(G) ≤ T2(C5) + T2(∪5

i=1Sri+1) ≤ e(C5) + 3 + r1 +

1 + r2 + 1 = r1 + r2 + 10 < e(G) + 3. If there exists one vertex uj such that rj = 0

and ri ≥ 1 for every i �= j, the proof is identical to the previous case.

(ii) Assume that r1 = n − 5 and ri = 0 for each i = 2, . . . , 5. From Theorem 2.1,

T2(G) ≤ T2(Sn−4 ∪ 2K2) + T2(S3 ∪K2) = n+ 3 = e(G) + 3.

(iii) Assume that there exist two vertices ui and uj such that ri ≥ rj ≥ 1 and rs = 0 for

s �= i, j. Note that G \ C5 is isomorphic to Sri+1 ∪ Srj+1 ∪ 3K1. Next, we consider

the two possible subcases, that is, j = i+ 1 and j = i+ 2.

(a) Let j = i+1. If rj = 1, from Theorem 2.1, T2(G) ≤ T2(Sri+1∪S3∪K2)+T2(S3∪
K2) = (ri+1+3)+(3+2) = (5+ri+1)+3 = n+3. If rj ≥ 2. From Theorem 2.1,

T2(G) ≤ T2(Sri+1∪Srj+1∪S3)+T2(P4) ≤ (ri+rj+2)+6 = (ri+rj+5)+3 = n+3.

(b) Let j = i+2. Consider the graphs G1 and G2 that are isomorphic to Sri+2 and

Srj+3, respectively. Observe that G1 ≈ G2 is isomorphic to G and both satisfy

Conjecture 1.2 since they are trees. From Lemma 2.6, T2(G) = T2(G1 ≈ G2) ≤
e(G1 ≈ G2) + 3 = e(G) + 3;

(iv) Consider that only ri, rj and rt are non-zero such that ri ≥ rj ≥ rt ≥ 1. There are

only two possibilities:

(a) Let j = i+ 1 and t = i+ 2. In this case, the subgraph G \ C5 is isomorphic to

Sri+1∪Sri+1+1∪Sri+2+1∪2K1. From Theorem 2.1, T2(G) ≤ T2(Sri+1∪Sri+1+1∪
Sri+2+1 ∪K2) + T2(P5) < (ri + ri+1 + 2) + (4 + 3) ≤ n+ 3 = e(G) + 3.
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(b) Let j = i+ 1 and t = i+ 3. In this case, the subgraph G \ C5 is isomorphic to

Sri+1 ∪ Sri+1+1 ∪ Sri+3+1 ∪ 2K1. From Theorem 2.1, T2(G) ≤ T2(Sri+2 ∪ S3) +

T2(Sri+1+2∪Sri+3+1∪K2) ≤ (ri+2+3)+(ri+1+1+ri+3+2) = n+3 = e(G)+3.

Case (C): Assume g = 7 and let V (C7) = {u1, u2, u3, u4, u5, u6, u7}.

(i) Consider that there exist t ≥ 3 at least three vertices such that ri �= 0, say ri ≥ rj ≥
. . . ≥ rt. The subgraphG\C7 is isomorphic to

(⋃t
i=1 Sri+1

)∪(7−t)K1. From Theorem

2.1, T2(G) ≤ T2(C7) + T2

((⋃t
i=1 Sri+1

) ∪ (7− t)K1

)
< 8+ (ri +1+ rj +1) < n+3.

(ii) Consider that there exist ui such that ri = n − 7. Applying Theorem 2.1, we get

T2(G) ≤ T2(Sn−6 ∪ 3K2) + T2(S3 ∪ 2K2) = (n− 6 + 2) + (3 + 2) = n+ 1 < n+ 3.

(iii) Consider that there exist ui and uj such that ri ≥ rj ≥ 1 and ri + rj = n − 7.

Note that G \ C7 is isomorphic to Sri+1 ∪ Srj+1 ∪ 5K1. From Theorem 2.1 we get

T2(G) ≤ T2 (C7) + T2

(
Sri+1 ∪ Srj+1 ∪ 5K1

)
< 8 + ri + rj + 2 = n+ 3.

These cases complete the proof. �

Lemma 3.7 If G is a unicyclic graph of order n ≥ 4 with girth g ∈ {3, 5, 7} that has not

only pendant edges attached to the vertices of the cycle. Then T2(G) ≤ e(G) + 3.

Proof Suppose that G is a unicyclic graph of order n ≥ 4 with girth g ∈ {3, 5, 7}
that has not only pendant edges attached to the vertices of the cycle. Consider each

connected component Hi of the graph G−Cg for i = 1, . . . , p that is a tree and the graphs

H1 ∼ Cg, (H1 ∼ Cg) ∼ H2, . . . , ((H1 ∼ Cg) ∼ H2) ∼ . . . ∼ Hp. From Lemmas 2.5 and

3.6, inequality of the Conjecture 1.2 holds for each of the previous graphs. Since the last

graph is isomorphic to G, the result follows. �

Now, our main result follows from Lemmas 3.4, 3.5, 3.6 and 3.7.

Theorem 3.8 If G is a unicyclic graph of order n then T2(G) ≤ e(G) + 3.
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