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ABSTRACT

In this paper, we propose a generic branch-and-cut algorithm for a special class of bi-level
combinatorial optimization problems. Namely, we study such problems that can be reformulated
as bilinear min-max combinatorial optimization problems. We show that the reformulation can
be efficiently solved by a branch-and-cut algorithm whose cuts represent the inner maximization
feasibility set. The algorithm generalizes a method developed recently by Roboredo and Pessoa for
two particular bi-level problems. In addition, we apply the algorithm on the r-Interdiction Median
Problem with Fortification (RIMF). The RIMF considers sets of facilities and customers where
each customer is served by the nearest facility unless the facility is interdicted and not fortified.
The objective is to minimize the total weighted distance by fortifying q facilities knowing that r
facilities will be interdicted. Our numerical results show that our method is more suitable on large
instances than the best exact method found in literature.

KEY WORDS. Integer programming, bi-level programming, Min-max problems, r-Interdiction
median problem with fortification.

Main area: Optimization
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1 Introduction

Bilevel programming can model optimization problems where two noncooperative
decison makers (competitors) choose their decisions (strategies) in a sequential way. Each
competitor aims at optimizing his own objective function taking into account the strategy of the
other. The competitor that chooses the strategy first is called leader while the second one is called
follower. Each decision maker makes his choices knowing that the other decision maker will
react optimally, choosing among a set of predetermined strategies. The objective function of the
leader and follower are called, respectively, first level objective function and second level objective
function. The decision variables of the leader and the follower are called, respectively, decision
variables of the first level and decision variables of the second level. Bilevel programming is a large
and active field of research. Some good references on the topic are Dempe (2003), Colson et al.
(2005) and Moore and Bard (1990), among others.

We deal in this paper with a class of Bilevel Combinatorial Optimization Problems
(BCOP) that can be reformulated as bilinear min-max optimization problems. The min-max
optimization are further reformulated as combinatorial optimization problems with a very large
number of constraints. In our approach, the constraints are generated on demand within a
branch-and-cut algorithm.

The contributions of this paper are two-fold. First, we formalize a generic branch-and-cut
algorithm that can be applied to a large class of BCOP. Our approach encompasses the algorithms
that had been used previously in Roboredo and Pessoa (2013) and Roboredo and Pessoa (2012)
for the (r, p)-centroid problem (Hakimi, 1983) and a competitive location problem called Budget
Constrained Centroid Problem proposed by Plastria (2001), respectively. While Roboredo and
Pessoa (2012, 2013) could optimally solve many open instances for the first time, the general
framework behind the algorithms was not fully understood in Roboredo and Pessoa (2012, 2013).
Second, we apply the framework to the r-Interdiction Median Problem with Fortification (Church
and Scaparra, 2007) and our results show that our algorithm is more efficient than the best from the
literature (Scaparra and Church, 2008a) on large instances.

This paper is divided as follows. In section 2 we present our framework. In Section
3, we describe two applications of our methodology. We describe in Sections 3.1 and 3.2
the (r, p)-centroid problem and the r-Interdiction Median Problem with Fortification (RIMF),
respectively. We provide natural bilevel formulations for these problems and show how they can
be reformulated as bilinear min-max optimization problems. In section 4 we show a comparison
between our technique and the best exact one found for the RIMF and present statistics of our
approach for large instances. Finally in section 5 we present the conclusions and some possibilities
for future researches.

2 The Framework

In this section we describe formally our approach to solve bilinear min-max combinatorial
optimization problems. Let P and P ′ be two polyhedrons and define the feasibility sets of the leader
and of the follower as X = P ∩ {0, 1}n and Y = P ′ ∩ {0, 1}m, respectively. Let C ∈ Rm×n be a
cost matrix, D ∈ Rn and E ∈ Rm be cost vectors. We study herein BCOP that can be reformulated
as:

min
x∈X

max
y∈Y

yTCx+Dx+ Ey (1)

We solve min-max problem (1) by replacing the inner maximization with a (finite) set of
linear inequalities:
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min
x∈X

z (2)

s.t. z ≥ yTCx+Dx+ Ey, ∀y ∈ Y (3)

Because Y ⊂ {0, 1}m, the number of constraints (3) is finite. Nevertheless, this number
is likely to be exponential in n and m so that efficient approaches for the above problem should
rather generate the constraints on demand in a branch-and-cut algorithm. Namely, given a relaxed
leader solution x, the separation problem associated to (3) can be cast as:

max
y∈Y

yTCx+Dx+ Ey (4)

Our exact algorithm is built on the top of the branch-and-cut algorithm using the model
given by (2)-(3). Constraints (3) are added through a cut callback by applying the exact model (4).
Heuristic can also be used for the separation problem in order to efficiently find some violated cuts
and thus avoiding solving exactly problem (4).

3 Applications

3.1 The discrete (r, p)-centroid problem

The discrete (r, p)-centroid problem is formally defined as follows: Consider two
nooncooperative firms (leader and follower). The leader has to place p facilities on an arena
knowing that the follower will react by placing r facilities. The arena is a complete bipartite graph
G = (V,E) where each vertex v ∈ V is either a customer or an applicant facility of the leader or
the follower. As a result, V can be partitioned into two disjoint subsets I and J , where I is the set
of applicant facilities, and J is the set of customers. The edge set E of G has an edge e = (i, j) for
each i ∈ I and j ∈ J , with an associated distance dij . Each customer’s demand wj is totally served
by the firm which places the nearest facility. Ties are broken in favor of the leader’s facilities,
and ties between facilities of the same firm are broken arbitrarily. Each firm aims at serving the
maximum demand as possible. The discrete (r, p)-centroid problem consists of deciding where the
leader places its p facilities. The (r, p)-centroid problem was proposed by Hakimi (1983) and has
been widely researched in literature, see Roboredo and Pessoa (2013) and the references therein.

Now we describe a natural bilevel formulation for the (r, p)-centroid problem. This
formulation uses four sets of variables x, y, s and t. For each i ∈ I , binary variable xi is equal
to 1 if and only if the leader places the facility i and binary variable yi is equal to 1 if and only if
the follower places the facility i. Then, for each i ∈ I and j ∈ J , binary variable sij is equal to 1
if and only if customer j is served by the leader’s facility i. Similarly, for each i ∈ I and j ∈ J ,
binary variable tij is equal to 1 if and only if customer j is served by the follower’s facility i. The
formulation follows.
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max
x,s

∑
j∈J

∑
i∈I

wjsij (5)

s.t.
∑
i∈I

xi = p (6)∑
i∈I

sij ≤ 1, ∀j ∈ J (7)

sij ≤ xi, ∀i ∈ I,∀j ∈ J (8)

sij ≤ 1−
∑

k∈I|dkj<dij

tkj , ∀i ∈ I,∀j ∈ J (9)

max
y,t

∑
j∈J

∑
i∈I

wjtij (10)

s.t.
∑
i∈I

yi = r (11)∑
i∈I

tij ≤ 1, ∀j ∈ J (12)

tij ≤ yi, ∀i ∈ I,∀j ∈ J (13)

tij ≤ 1−
∑

k∈I|dkj≤dij

skj , ∀i ∈ I,∀j ∈ J (14)

xi, yi, sij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (15)

The leader’s objective function (5) aims at maximizing the total demand served by the
leader. Constraint (6) ensures that the leader places exactly p facilities. Constraints (7) ensure that
each customer is served by at most one leader’s facility. Constraints (8) ensure the consistency
between the variables x and s. Constraints (9) ensure that the leader can only use the facility i to
serve the customer j if there is no facility placed by the follower closer to j than i. The follower’s
objective function (10) aims at maximizing the total demand served by the follower. Constraints
(11) ensures that the follower places exactly r facilities. Constraints (12) ensure that each customer
is served by at most one follower’s facility. Constraints (13) ensure the consistency between the
variables y and t. Finally, constraints (14) ensure that the follower can not use the facility i to serve
the customer j if there is a facility placed by the leader at least as close to j as i.

Roboredo and Pessoa (2013) proposed the first MIP formulation for the discrete (r, p)-
centroid problem having a polynomial number of variables although an exponential number of
constraints are required. Based on that formulation, the authors proposed a branch-and-cut
algorithm where cuts are separated using an auxiliary MIP formulation. Their paper also reported
experiments that show that the new algorithm clearly outperformed the previous known exact
methods for the problem. Next, we derive a suitable bilinear min-max formulation for the problem
such that the corresponding generic branch-and-cut algorithm described in Section 2 turns out to be
the basic algorithm proposed by Roboredo and Pessoa (2013). To obtain this formulation we first
follow the steps of Roboredo and Pessoa (2013), and observe that the competition is a zero-sum
game. As a result, the leader’s objective function (5) is equivalent to minimize the total demand
served by the follower. Next, we reformulate the problem in such a way that the variables controlled
by the leader do not appear in the follower’s constraints and vice-versa. For that, we use the set of
variables x, y, s and t. Variables x and y are as above. For each i ∈ I and j ∈ J , the binary variable
sij is equal to 1 if and only if i is the facility placed by the leader closest to the customer j. For
each i ∈ I and j ∈ J , the binary variable tij is equal to 1 if and only if i is the facility placed by
the follower closest to the customer j. The complete bilinear min-max formulation for the discrete
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(r, p)-centroid problem is below.

min
x,s

∑
j∈J

∑
k∈I

wj

∑
i∈I|dij>dkj

sij

 tkj (16)

s.t.
∑
i∈I

xi = p (17)

sij ≤ xi, ∀j ∈ J,∀i ∈ I (18)∑
i∈I

sij = 1, ∀j ∈ J (19)

xi, sij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (20)

max
y,t

∑
j∈J

∑
k∈I

wj

∑
i∈I|dij>dkj

sij

 tkj (21)

s.t.
∑
i∈I

yi = r (22)

tij ≤ yi, ∀j ∈ J,∀i ∈ I (23)∑
i∈I

tij = 1, ∀j ∈ J (24)

yi, tij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (25)

The first level objective function (16) aims at minimizing the total demand served by
the follower. Constraint (17) ensures that p facilities must be placed by the leader. Constraints (18)
ensure the consistency between the variables x and s. Constraints (19) ensure that for each customer
j, there is exactly one facility closest to j placed by the leader. The second level constraint (22)
ensures that r facilities must be placed by the follower. Constraints (23) ensure the consistency
between the variables t and y. Constraints (24) ensure that for each customer j, there is exactly one
facility closest to j placed by the follower.

3.2 The r-Interdiction Median Problem with Fortification

The environment of the RIMF is composed of n customers and p facilities where the
demand wj of each customer j is served by the closest facility. The distance between a facility
i ∈ I and a customer j ∈ J is denoted by dij , yielding a serving cost of cij = wjdij . If a facility is
interdicted due to for example an intentional attack or natural disaster then the customers served by
this facility skip to the cheapest facility not interdicted. When it happens the system’s performance
decreases. A way to avoid part of this decrease in the performance is to fortify the facilities. If a
facility is fortified and interdicted at the same time then customers can be served by this facility.
The problem consists of choosing a group of q facilities to fortify knowing that r facilities will be
interdicted. The r facilities to be interdicted are chosen in order to damage the cost of the system
performance as much as possible. The RIMF can be seen as a BCOP where the first level decision is
to choose the group of q facilities to fortify and the second one is to choose the group of r facilities
to interdict.

The researches on RIMF are recent. The RIMF was proposed by Church and Scaparra
(2007), where the authors proposed a mixed-integer formulation with an exponential number of
constraints and variables. That formulation could optimally solve instances with up to p = 20,
q = 10 and r = 4. Scaparra and Church (2008b) proposed an approach where the size of the model
is significantly reduced. The main weakness of that approach is to require a complete enumeration
of all possible ways of interdicting r of the p facilities. The authors optimally solved instances
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with up to p = 30, q = 7 e r = 7. Scaparra and Church (2008a) proposed a bilevel formulation
and a specialized tree search algorithm where it is necessary to solve at most rq+1−1

(r−1) second level
subproblems. That tree search algorithm could optimally solve instances with up to p = 60, q = 12,
and r = 5.

We describe next a natural formulation for the RIMF. This formulation uses three sets of
variables x, y, and s. For each i ∈ I , binary variable xi is equal to 1 if and only if the leader chooses
to fortify facility i and binary variable yi is equal to 1 if and only if the follower decides to interdict
facility i. Then, for each i ∈ I and j ∈ J , variable sij is equal to 1 if and only if customer j uses
the leader’s facility i. The formulation follows.

min
x,s

∑
j∈J

∑
i∈I

cijsij (26)

s.t.
∑
i∈I

xi = q (27)∑
i∈I

sij = 1, ∀j ∈ J (28)

sij ≤ 1− yi + xi, ∀i ∈ I,∀j ∈ J (29)

max
y

∑
j∈J

∑
i∈I

cijsij (30)

s.t.
∑
i∈I

yi = r (31)

xi, yi, sij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (32)

The leader’s objective function (26) aims at minimizing the system’s cost after the
fortifications and interdictions. Constraint (27) ensures that the leader fortifies exactly q facilities.
Constraints (28) ensure that each customer uses exactly one facility. Constraints (29) ensure that a
customer can not use an interdicted facility unless it is fortified. The follower’s objective function
(30) is the opposite of (26). Constraint (31) ensures that the follower interdicts exactly r facilities.

Similarly to the (r, p)-centroid problem, we obtain a min-max formulation for the RIMF
by reformulating the problem in such a way that the variables controlled by the leader (follower)
appear only in the leader’s (follower’s) constraints. The formulation uses five sets of variables.
Variables x and y are defined in the above formulation, and we describe next variables s′, t and
t′ together with the new objective function. For each i ∈ I and j ∈ J , the binary variable s′ij is
equal to 1 if and only if i is the cheapest fortified facility for customer j, the binary variable t′ij
is equal to 1 if and only if i is the cheapest non-interdicted facility for customer j, and the binary
variable tij is equal to 1 if and only if i is interdicted and any facility cheaper for the customer j
than the facility i is also interdicted. Note that the cost of serving a given customer j ∈ J is equal
to the minimum between the serving cost to the cheapest fortified facility and the serving cost to
the cheapest non-interdicted facility. This cost can be calculated by the following expression.∑

i∈I
cijs

′
ijtij +

∑
i∈I

cijt
′
ij

∑
k∈I:ckj≥cij

s′kj , (33)

Exchanging the order of the sums in the second term of (33), we obtain that the cost of
serving customer j ∈ J can be computed as

∑
i∈I s

′
ij

(
cijtij +

∑
k∈I:ckj≤cij

ckjt
′
kj

)
. Summing

over all customers, the objective function of our reformulation is

C(s′, t, t′) =
∑
j∈J

∑
i∈I

s′ij

cijtij +
∑

k∈I:ckj≤cij

ckjt
′
kj

 . (34)
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For each customer j ∈ J we define the constant φ(k, j) denoting the kth cheapest facility
for customer j. Ties are broken arbitrarily. The bilinear min-max formulation for the RIMF follows.

min
x,s′

C(s′, t, t′) (35)

s.t.
∑
i∈I

xi = q (36)

s′ij ≤ xi, ∀j ∈ J,∀i ∈ I (37)∑
i∈I

s′ij = 1, ∀j ∈ J (38)

xi, s
′
ij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (39)

max
y,t′ ,t

C(s′, t, t′) (40)

s.t.
∑
i∈I

yi = r (41)

tij ≤ yi, ∀j ∈ J,∀i ∈ I (42)

tφ(1,j)j = yφ(1,j), ∀j ∈ J (43)

tφ(i,j)j ≥ tφ(i+1,j)j , ∀j ∈ J,∀i = 1, ..., |I| − 1 (44)

t′φ(1,j)j = 1− tφ(1,j)j , ∀j ∈ J (45)

t′φ(i,j)j = tφ(i−1,j)j − tφ(i,j)j , ∀j ∈ J,∀i = 2, ..., |I| (46)

yi, tij , t
′
ij ∈ {0, 1}, ∀i ∈ I,∀j ∈ J (47)

Constraint (36) ensures that q facilities must be fortified. Constraints (37) ensure the
consistency between the variables x and s′. Constraints (38) ensure that for each customer j, there is
exactly one cheapest fortified facility. The second level constraint (41) ensures that r facilities must
be interdicted. Constraints (42) ensure the consistency between the variables t and y. Constraints
(43) ensure that, if the customer j’s cheapest facility is interdicted, then the corresponding t variable
associated to this facility is equal to 1. Constraints (44) ensure that, for each customer j and facility
i, if tij = 1 then the t variables associated to customer j and any facility cheaper than i are also
equal to 1. This ensures the consistency of the t variables with their definitions. Constraints (45)
and (46) ensure that t′φ(i,j)j = 1 if and only if i is the cheapest facility for customer j such that
tij = 0.

We solve the min-max bilinear problem (34) - (47) by applying the framework described
in Section 2. In order to speed up our method, the cuts are separated in the following way. We
propose a greedy heuristic to efficiently find some violated cuts avoiding some IP optimizations. To
describe this heuristic, we recall that given a fortification described by x̄ and the corresponding s̄,
the separation problem looks for an interdiction described by y and the corresponding t and t′ that
maximizes C(s′, t, t′). The heuristic greedily constructs the strategy y by choosing r facilities. At
each iteration, it chooses the facility that causes the maximum increase in C(s′, t, t′). We always
try to separate cuts first by the greedy heuristic avoiding some IP optimizations. We also define a
threshold parameter ϵ to reduce the total number of separated cuts. While the gap is greater than ϵ,
we separate cuts for any solution of the linear relaxation found during the branch-and-bound search.
When the gap becomes smaller than or equal to ϵ, the cuts are separated only for integer solutions.

4 Computational experiments

In this section, we present report computational experiments made to test the method
proposed in Subsection 3.2. First we compare the computational performance of our method and
the best previous exact one, proposed by Scaparra and Church (2008a). We test our method on all
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Table 1: Comparing runtime between our method and Scaparra and Church (2008a) (IE) for
instances with p = 25 and p = 30

Instance Optimal
Characteristics Value Time(s)
p q r This Paper IE
25 3 4 153638.54 6.72 1.86
25 3 5 164458.35 25.42 4.99
25 3 6 174942.60 19.91 9.91
25 3 7 188282.97 25.48 26.89
25 3 8 205611.14 69.97 41.53
25 5 4 143058.40 8.92 7.13
25 5 5 151559.19 23.92 22.61
25 5 6 162485.24 31.28 55.71
25 5 7 171987.27 68.97 170.76
25 5 8 181881.35 82.28 246.03
25 7 4 137307.81 17.61 19.11
25 7 5 147589.13 60.78 80.89
25 7 6 156685.61 105.25 209.96
25 7 7 164595.84 176.45 616.69
25 7 8 172623.60 265.75 980.67
30 3 4 121378.81 6.08 2.69
30 3 5 132032.99 13.10 9.36
30 3 6 140618.50 22.47 24.34
30 3 7 152969.85 49.92 43.97
30 3 8 164159.70 57.82 72.31
30 5 4 118060.47 13.44 16.31
30 5 5 128667.35 75.54 70.70
30 5 6 137061.54 114.55 195.29
30 5 7 146299.89 133.36 436.55
30 5 8 155709.62 239.34 693.39
30 7 4 114789.52 34.28 61.00
30 7 5 121953.59 106.62 357.04
30 7 6 130678.87 222.33 994.23
30 7 7 136730.79 273.20 2832.11
30 7 8 144073.46 346.03 4255.58

instances tested in that paper. In order to show the robustness of our method, we also test it on larger
instances. The experiments include tests on the 150-node London benchmark data set (Goodchild
and Noronha, 1983). That data set is composed of 150 nodes (n = 150) and is frequently used
as a benchmark for the p-median problem. The other parameters of the problem vary as follows:
p ∈ {25, 30, 40, 50, 60}, q ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12} and r ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}. In all tests
the p existing facilities are initially located at the optimal p-median sites of the data set. We use the
CPLEX 12.1 and all tests are carried out in a 2.13 GHz PC Pentium Intel Core 2 duo with 2 GB of
RAM. Section 4.1 and 4.2 show respectively the comparison between our method and the exact one
proposed by Scaparra and Church (2008a), and the computational results for larger instances.

4.1 Comparison between our method and the best exact one.

In this subsection we present a comparison of the computational performance of our
method and the Implicit Enumeration (IE) proposed by Scaparra and Church (2008a). For instances
with r ≤ 4 we separate the cuts by a pure enumerative method instead of executing the exact MIP
separation given by (40) - (47). For all the instances in this subsection we use ϵ = 0.03 except
for instances with p = 40, where we use ϵ = 0.05. Table 1 shows the comparison for instances
with p ∈ {25, 30}, while Table 2 shows the comparison for instances with p ∈ {40, 50, 60}.
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Table 2: Comparing runtime between our method and Scaparra and Church (2008a) (IE) for
instances with p = 40, p = 50 and p = 60

Instance Optimal
Characteristics Value Time(s)
p q r This Paper IE
40 4 2 75676.41 2.08 0.20
40 4 3 81766.35 6.55 2.67
40 4 4 88495.16 39.92 15.30
40 4 5 94687.71 76.44 58.71
40 6 2 75418.05 7.52 0.52
40 6 3 81424.85 26.13 11.10
40 6 4 87170.59 142.83 110.76
40 6 5 93286.72 267.44 476.28
40 8 2 74847.58 13.59 1.30
40 8 3 80370.63 84.47 53.23
40 8 4 86182.77 505.20 797.86
40 8 5 91664.38 1313.22 3467.25
50 5 2 60168.50 3.91 0.25
50 5 3 65160.41 30.39 4.42
50 5 4 69918.29 86.86 22.86
50 5 5 74694.85 205.31 117.28
50 8 2 59225.56 9.25 1.14
50 8 3 63552.59 71.50 26.51
50 8 4 68302.73 323.86 197.98
50 8 5 73055.22 645.91 1665.66
50 10 2 58553.08 39.70 2.11
50 10 3 62261.17 47.34 77.23
50 10 4 67026.53 368.69 664.77
50 10 5 71140.40 986.72 7441.07
60 6 2 46563.64 18.33 0.70
60 6 3 50809.54 119.27 9.53
60 6 4 54621.16 349.42 45.11
60 6 5 58615.76 551.05 204.12
60 9 2 45889.14 13.31 1.44
60 9 3 49697.61 103.25 65.67
60 9 4 53509.22 689.90 351.38
60 9 5 56932.06 2516.75 2229.49
60 12 2 45310.07 36.95 2.55
60 12 3 48814.47 182.99 254.38
60 12 4 52011.79 1185.30 1568.08
60 12 5 55469.28 8664.08 13088.10

The following headers are used for the columns: p, q and r indicate the instance characteristics,
Time(s) indicates the computational time in seconds. For each instance, we mark in bold the smallest
required time. The runs performed by Scaparra and Church (2008a) were carried out in a Pentium
4, 2.8 Ghz processor and 1GB of RAM.

Table 1 shows that our method can be several times slower than the IE for the smallest
instances where both running times are very small. On the largest instances we observe the opposite:
our method is several times faster. This can be explained by the fact that our method performs
expensive MIP optimizations to separate cuts in order to obtain a good lower bounds in the nodes
that are close to the root. If, on one hand it reduces the asymptotic increase of running time as
a function of the instance size, on the other hand it increases the absolute running time for small
instances. Our method was faster in 14 out of 24 instances.
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The results shown in Table 2 have a similar pattern except that the method of Scaparra
and Church (2008a) was faster than ours in more than 78% of the instances. This can be explained
by the fact that the values of r ranges from 4 to 8 for the instances of Table 1 and only from 2 to 5
for the instances of Table 2. We believe that our method would be several times faster for instances
with r greater than 5.

4.2 Computational results for large instances.

In this section we present statistics of our method for large instances (p ≥ 40 and r ≥ 6).
For all the instances in this subsection we use ϵ = 0.03 except for instances with p = 40, where
we use ϵ = 0.1. Table 3 shows the results for p ∈ {40, 50, 60}. The following headers are used
for the columns: p, q, and r indicate the instance characteristics, BestUB indicates the best upper
bound obtained for the problem, Final gap(%) indicates the gap between the best upper bound
and the best lower bound, Root gap(%) indicates the gap between the root node relaxation lower
bound and the value in the column Best UB, #Nodes indicates the total number of nodes created
by the branch-and-cut tree, and Total Time indicates the total CPU time in seconds consumed by
the complete branch-and-cut algorithm. For the instances that our method is not able to optimally
solve, we report the results when the running time reached 36000 seconds (10 hours).

In Table 3, we note that the method optimally solved 50 out of the 60 instances tested
in reasonable computational times where for 28 instances the total time consumed was smaller
than 4000 seconds. Another interesting observation is that as the value of p, q and r increase,
the instances also become more difficult. For a rough comparison against the method proposed in
Scaparra and Church (2008a) on large instances, the authors state that their method requires about
6 hours (21600 seconds) to solve the instance with p = 50, q = 8 and r = 7, while our execution
time is about one hour. Finally, a promising direction of improvement for our method is tightening
the root node relaxation bounds. Observe that these gaps are smaller than 10% only for 9 out of 60
instances.

5 Conclusions

In this paper we presented a framework to model certain bilevel combinatorial optimiza-
tion problems as bilinear min-max problems, and we derived a generic branch-and-cut algorithm
that could be applied to any problem modeled in that way. Then, we showed that the best known
algorithm proposed to solve the discrete (r, p)-centroid problem is indeed a particular case of our
framework. We further applied the framework to the RIMF and compare the computational results
with the best previous exact approach for the problem. The results showed that our approach is
more suitable to large instances.
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