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ABSTRACT

This paper presents a scalability and efficiency analysis for a parallel implemen-
tation of the standard simplex algorithm for multicore processors for solving large-scale
linear programming problems. We present a general scheme explaining how we parallelize
each step of the standard simplex algorithm pointing out important spots of our parallel
implementation. We choose to implement the standard simplex algorithm rather than the
revised method for being more suitable for parallelization. We verify the scalability of
different amounts of constraints and variables for large-scale problems, finding evidence
that the standard simplex algorithm has better parallel efficiency for problems with more
variables than constraints. One of the disadvantages of the standard simplex algorithm is
being less efficient for problems with more variables that constraints, however our parallel
version proved to be more efficient for this case. To support our claims, we present the
results of several experiments on a 24 cores share memory machine.
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1. Introduction

There has been many studies with parallel versions of the simplex method. Many
of those have focused on the revised simplex method due to the advantage of solving sparse
problems and being most effective where the number of variables is much larger than the
amount of restrictions (Yarmish and Slyke, 2003). However, The revised method is not well
suited for parallelization (Hall, 2007). Eckstein et. al (Eckstein et al., 1995) describe three
simplex parallel implementations, including a revised method, for dense LP problems on
the Connection Machine CM-2. They showed that CM-2 can yield better execution times
than a workstation from the same era and processing power of the CM-2. Thomadakis and
Liu (Thomadakis and Liu, 1996) worked on parallelizing the Standard and Dual simplex
algorithm based on steepest-edge, comparing it on two versions of Maspar (MP-1 and MP-
2). Their results show that as the problems size increases the speedup obtained by MP-1
and MP-2 is 100 times and 1000 times, respectively, over sequential steepest-edge. Hall
and McKinnon (Hall and McKinnon, 1998) studied an asynchronous variant of the revised
simplex method on the Cray T3D machine. They present different ways for improving the
performance of this algorithm on Cray, using distincts T3D routines. They also explain the
potential of this variant for shared memory processors, instead of the parallel distributed
implementation on the Cray T3D.

Since mid 2000’s, we have been facing a paradigm change where the computers
are not being produced with only one processing core. This tendency has being called
Era Multicore, detailed by Kock and Borkar (Koch, 2005; Borkar, 2007), which the idea
includes the principle of doubling the number of processing cores in a single chip with each
technology generation. Thus, it is important to validate parallel algorithms for scalable
performance. This means that the program should able to use progressively greater number
of processors in an efficiency way.

In 2009, Yarmish and Slyke (Yarmish and Slyke, 2009) presents a scalable sim-
plex implementation for large-scale problems of linear programming using 7 workstations
connected by Ethernet. Their parallel standard algorithm is more efficient than the revi-
sed method, which was validated by an analytical model.In another work produced in the
same year, N. Ploskas et al. (Ploskas et al., 2009) showed a parallel implementation of
the standard simplex algorithm using a personal computer with two cores. Due to heavy
communication, the computational results show that it is hard to achieve a linear speed-up
even with carefully selected partitioning patterns and communication optimization. The
standard Simplex is effective for dense problems and when the relation of variables and
constraints is not very high (Yarmish, 2006). However, it is more suitable for parallel
implement with this relation is not a serious problem (Yarmish and Slyke, 2009).

This paper presents a scalability and efficiency analysis for a parallel implemen-
tation of the standard simplex algorithm for multicore processors for solving large-scale
linear programming problems. We choose the standard simplex algorithm for being more
suitable for parallelization.We verify the scalability of different amounts of constraints and
variables for large-scale problems, finding evidence that the standard simplex algorithm
has better parallel efficiency for problems with more variables than constraints. One of the
disadvantages of the standard algorithm is being less efficient for problems with more vari-
ables that constraints, however our parallel version proved to be more efficient. To support
our conclusions, we present the results of several experiments on a 24 cores share memory
machine.
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This paper is organized in the following way: in Section 2 we present the metrics
that are necessary to make the scalabily analysis; in Section 3 we present a general scheme
for a parallel implementation; in Section 4 we detail our parallel implementation; in Section
5 we show the results and finally in the Conclusion we make our final considerations about
our main contributions.

2. Scalability and Efficiency

Among the many challenges of the the multicore era, one of the most important is
to check if the algorithms have performance scalability problems, i.e., whether the program
is able to use a progressively greater number of processors. Therefore, it is important to
accomplish scalable parallelism, which is adaptable to a wide range of parallel platforms.

For scalability analysis, speedup and efficiency are considered the main metrics.
The speedup S is defined as the ratio between sequential time', Ty and parallel time Tp.

_,tP

S (1

The speedup tells how many times the parallel algorithm is faster than the serial
algorithm. A linear speedup is that where the algorithm has linear acceleration, i.e., by
doubling the number of processors it is obtained twice the speed. Very often real speedups
tends to saturate for an increased number of processors. This occurs because the size of the
problem is fixed while the number of processors is increased, which implies the reduction
of the amount of work per processor. With less work per processor, overhead? cost may
becomes more significant, so that the relation between the serial time and parallel time
does not improve linearly.

The efficiency E is the division of speedup S by the amount of processors P used in
the computation.

S
E=— 2
5 @)
Efficiency is a normalized measure of speedup that indicates how effectively each
processor is employed. A speedup with value equals to P, have an efficiency equal 1, i.e.,
all processors are effectively used. However, efficiency is typically less than 1, due to
performance loss, and always decreases as the number of processors is increased.

Although efficiency can show how effectively is the processors are being used for a
specific problem size, the serial portion of the code can be much larger for small problems.
Therefore, to have better insights about the scalability of a parallel algorithm, it is necessary
to vary the size of the problem and observe the evolution of the efficiency. For scalable
algorithms, it is expected that efficiency scales with an increasing problem size, because
the parallel portion increases more than the serial.

'Serial time is the execution time of the algorithm implemented sequentially.
2Qverhead is any processing or storage in excess, whether of computing time, memory, bandwidth or other resource
that is required to be used or spent to perform a certain task.

2401



‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

3. General Scheme

For a better understanding of this paper, we explain three important concepts of
parallelism present in this article: thread, barrier and critical region.

Thread is a way for a process to divide itself into two or more tasks that can be performed
concurrently. It can exist within the same process and share resources such as
memory.

Barrier allows synchronization of several threads at a specific point in the code. It is
used in applications where all threads must complete one stage before moving all
together for the next phase. A barrier for a group of threads means that any thread
should stop at this point and can not proceed until all other threads have reached
the barrier.

Critical section is a region of the code where only one thread can enter at a time, otherwise
the execution becomes inconsistency.

The parallel scheme is composed of 6 steps. The first is to make the initial simplex
table with all constraints and variables. The second selects the column with the minimum
negative value of the objective row. The third step selects the row with minimum ratio

table[i][LAST_COL)|
tableli][PIVOT_-COL|

3)

, where table[i][LAST_COL)] is the independent value, table are the constraints,
i is the row index and P/VOT _COL is the index of the pivot column. Step IV updates
the pivot row. Step V updates the remaining constraint rows and the last step does three
operations in the same loop. Those steps can be viewed on Figure 1.
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Figure 1. Flowchart of the Simplex algorithm

Step II contains a parallelized loop, i.e., each thread is responsible for a number of
columns. They select the minimum negative value of the objective row. After this, it is
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necessary to select the threads with the lowest negative value. For this, all threads enter
a critical section, as they finish their tasks, comparing their local minimum value with a
global variable that, at the end, will hold minimum negative value. In sequence, there is a
barrier to make sure that all threads have the same global column.

We use a single thread to update variables and in step III. Then, we locally select
the row with the minimum ratio and use a critical region to select the global row, in the
same way it happens on step II. A barrier synchronizes the global row among the threads.
Another barrier before the step IV is necessary for getting the correct pivot with the row
and column selected.

The parallel loop of step IV updates the pivot row. To proceed, it is necessary that
this step completes because the values of this row are used in the next step. Therefore, it
needs a barrier.

The Step V is a parallelized loop for updating the remaining constraint rows without
a barrier. A barrier is not necessary because the next step is independent of this step.

Step VI is an algorithm improvement. Using the same parallel loop, three ope-
rations are performed: update the the objective row; select locally the column with the
minimum negative value of the objective row; and count the negatives values of the objec-
tive row. We have a barrier to ensure the counting is correct, because the stop criterion is
satisfied when there is no more negative values in the objective row. If the stop criterion is
not reached, the loop restarts in the critical section of the second step to select the global
column.

Observe the synchronization between the steps, as they are dependent on each other.
For example, step III can only be accomplished if the column index is set. Step IV needs
the pivot, i.e., the column selected in step II and the row selected in step III. And the step
V needs the pivot row updated. The next section we detail our parallel implementation.

4. Parallel Implementation

The parallelization was done in C++ using OpenMP (Open Multi-Processing),
which is an API (Application Programming Interface) platform using shared memory mul-
tiprocessing. It consists of a set of directives to the compiler, library functions, and envi-
ronment variables that specify the implementation of a parallel program (OpenMP, 2013).

One of the key constructions of openMP is the directive omp parallel that specifies
a parallel section. When a parallel section is encountered, threads are triggered as needed,
and they all start running parallel code within that section.

The pseudo-code of our standard simplex parallel implementation can be viewed
on Figure 2. Note that the threads are triggered only once to avoid the overhead of creating
and destroying threads. For the purpose of code optimization, the fist part of step II runs
before the start of the parallel section (lines 4-7). Each thread works locally on a set of
columns, finding the index of the column with the minimum negative value in the objective
rOW.

The directive omp for (line 4), which divides the interval iterations of the loop
between the threads automatically. At the end of a loop preceded with directive omp for
there is an implicit barrier that synchronizes all threads, i.e., only after all threads perform
their jobs is that they will continue to the rest of the program code. However, you can add
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the clause nowait to the directive in order to remove this barrier since , in the case, there is
no need for synchronization after completion of tasks of each thread.

The next step is to find the global column index among the solutions found by each
thread. Note that, this index column is a shared variable, i.e., it is in common to all threads.
Thus, two or more threads can not read or write that variable at the same time, because if
this happens the variable may contain some erroneous value. This is a critical region. To
solve this problem, we use the directive omp critical (line 11) to ensure access to only one
thread at a time. The directive omp barrier creates a synchronization barrier to ensure that
all threads have the shared variable updated correctly (line 13).

And the directive omp single is used to ensure that only one thread execute this
section of code which is used to update some control variables (lines 14-15).
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1 #pragma omp parallel scope of the data L )

2 { 33 //Step IV

3 //STEP II 34 #pragma omp for

4  #pragma omp for nowait 35 for (j = 0; j <= col_size; j++)

5 for (j = 0; j <= col_size; j 36 eac lent of the pivot row

6 /*S 37 he piv

7 ow. */ 38

8 39 //STEP V

9 do{ 40 #pragma omp for nowait

10 41 for (i = 0; 1 < row_size; i++)

11 #pragma omp critical 42 if( the row is mot the same of the pivot)

12 /*Select globally the minimum (PIVOT_COL).*/ 43 for (j = 0; j <= col size; j++)

13 #pragma omp barrier 44 table[i][j] =

14 #pragma omp single nowait 45 table[i][j] -

15 //Update Variables. 46 (table[i][PIVOT_COL] * table[PIVOT_ROW][j])
16 47

17 //STEP III 48 //STEP VI

18 #pragma omp for nowait 49 #pragma omp for reduction(+:count)

19 for (1 =0; 1 < row size; i++) { 50 for (j = 0; j <= col size; j++){

20 ratio = table[i][LAST COL] / tableli VOT_CoL]51 table[LAST ROW][]] =

21 /*Select locally the row with the m ratio.52 table[LAST_ROWI[j] -

22 } B3 (table[LAST_ROW] [PIVOT_COL] * table[PIVOT_ROW][j])
23 54 if(any j elementy of the objective row is negative){
24 #pragma omp criti 55 /*Sel l I l [ f

25 /*Select globally 1 ( */ 56 1 /e v o
26 57 count = count + 1

27 #pragma omp barrier 58

28 #pragma omp single nowait 59 }

29 //Update Variables. 60

30 61 } while(count > 0)

31 pivot = table[PIVOT ROW][PIVOT COL] 62 }

32 #pragma omp barrier

Figure 2. Parallel Code

The table of variables is composed by the constraint matrix A, the vector of coeffi-
cients of the objective function C and the vector of independent values b, as showed in the
table 1. So, the independent values are in the last column and the objectives values are in
the last row.

A |b
—c |0

Table 1. Initial Table

The third step divides a set of rows for each thread, which find locally the row that
has the minimum value of the ratio seen in equation 3 (lines 18-22). Note the use of the
directive critical (line 24) to find globally the minimum row index. Then all threads
are synchronized to get the correct pivot. If there were no barrier (line 27), it could happen
that the row index had a wrong value and, consequently, the pivot would be wrong too.
The second barrier (line 32) is to ensure that all threads have the same pivot value before
proceeding to the next step.

2404



‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

The fourth step parallelizes the pivot row division by the pivot (lines 34-37). Note
that there is an implicit barrier after the execution of the loop. This is necessary since the
next step needs the normalized pivot row.

The Step V (lines 40-46) is responsible for updating the remaining constraints using
the formula presented on lines 44-46. Observe the presence of the clause nowait in the loop
directive.

The last step consists of three operations in the same loop: a modification of the
objective row using the same formula used in the previous step (lines 49-53); a search
per thread for the column with the minimum negative element in the objective row (lines
54-56), i.e., the same operation as the fist part of step II; and an increment of the variable
count (line 57).

The clause reduct ion (line 49) makes a local copy of the variable in each thread,
but the values of the local copies are summarized (reduced) into a global shared variable
at the end of the loop. In our case each thread have a local copy of the variable count and
when the threads finish their jobs the local copies of count are added to a shared variable
version of count. In the end (line 61) is the test for the stop criterion. If there is any
negative numbers in the objective row the algorithm continues.

5. Results

For the experiments, the computer used has two AMD Opteron 6172 with 12 cores
2.1 Ghz, 16 GB DDR3 RAM, running Ubuntu 12.04.1 LTS.

To generate the set of LP problems used to test the standard simplex algorithm is
necessary create the initial table which is represented by table 1. In order to generate the
test problems we implemented in Octave® a method in which the values of A, C and b were
generated with random numbers. The dimensions of the problems were the following:
256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096. The number of rows and columns
were defined as combinations of numbers from this. Each problem was generated 5 times
with different data, thereby generating 405 (9 * 9 * 5) problems. For example, the pro-
blem 256x256 has 5 different instances: 256x256_1, 256x256_2, 256x256_3, 256x256_4,
256x256 _5. All instances have problems with different values.

All problems were solved using the serial standard simplex algorithm and the pro-
posed parallel implementation with 2, 4, 8, 16 and 24 threads. The execution time conside-
red was normalized per iteration and averaged among the execution times of the 5 problems
of the same size.

The figure 3 shows the graphics of efficiency for 2, 4, 8, 16 and 24 threads for a
varying number of constraints and variables. Note that the rows represent the constraints
of the problem, whereas the columns represent the variables.

First, note that as the number of threads increases the efficiency decreases which is
common to all parallel systems. Note that for 2, 4, 8 threads the values of efficiency are
close to 1. indicating a good use of the processors.

Note that for all threads, the efficiency value scales with the increasing magnitude
of the problems up to a certain amount of constraints and variables. Thus, we can say that

3GNU Octave is a high-level interpreted language, primarily for numerical calculations. The Octave language is quite
similar to Matlab® making scripts and tools often compatible.
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the algorithm is scalable to these problems. However, when we further increase the size
of the problem, observe a decline in the value of efficiency. This effect can be blamed on
the limited amount of cache memory, which may be insufficient to accommodate all the
values of large problem sizes, causing the data to be fetched from RAM memory, and thus
degenerating the performance.

Efficiency 2 threads Efficiency 4 threads

Variables 384256 < 384
256 Constraints

(a). Eficiency for 2 threads (b). Eficiency for 4 threads

Efficiency 8 threads Efficiency 16 threads

(c). Eficiency for 8 threads (d). Eficiency for 16 threads

Efficiency 24 threads

2 o
384 T 512

<
Variables 256" 256 3

Constraints

(e). Eficiency for 24 threads

Figure 3. Efficiency for varing proble sizes and varing humber of threads.

Observe in Figure 3 that setting the number of constraint to 256 and varying the
number of variables we see that the efficiency is higher than setting the number of variables
256 and varying the number of constraints. In other words, it shows that for problems with
more variables the parallel standard simplex had better efficiency than the problems with
more constraints. It happens in all other numbers of the figure 3.

Figure 3 supports what we suspected: the parallel standard simplex algorithm sol-
ves problems more efficiently with more variables than constraints. We can say that the
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simplex algorithm is more scalable for problems with more variables than constraints.
This also shows that in the parallel world it is better to solve problems with more vari-
ables, while in the sequential world the knowledge is thtat it was better to solve problems
with more constraints.

6. conclusion

One of the main points approached in this work is the importance of the program
being able to use progressively greater number of processors in an efficiency way. It is
necessary to analyze the scalability of parallel algorithms. We presented a general scheme
explaining how we parallelize each step of the standard simplex algorithm detailing impor-
tant spots of our parallel implementation.

Our parallel simplex algorithm demonstrated good performance and good scalabi-
lity to various combinations of variables and constraints, showing good efficiency inde-
pendently of the relation between variables and constraints. Although sequential standard
simplex algorithm has difficulties solving problems where the number of variables is higher
than the constraints, our parallel implementation proved to be more efficient for these type
of problems
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