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ABSTRACT

Control charts based on the Poisson distribution for monitoring series of counts
typically arising in the quality control are presented. The use of the regression model is
used by practitioners in industry when investigating one or more variables under the
assumption of some probability distribution for the data. However, many processes have
variables representing count data arise, in which case a Poisson distribution is more
appropriate. The scheme is based on the residuals deviance for detecting any disturbance in
the control variables. This paper presents the control charts for industrial processes that
involve count variables. We illustrated the performance of Poisson model-based control
charts to case study based on real process. Using Monte Carlo simulations run-length

properties of the proposed schemes are investigated.
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1. Introduction

Control charts require that the data monitored be independent and normally
distributed around the constant mean of a reference model (MONTGOMERY, 2005).
However, adjustments in one or more process control variables often result in alterations to
the reference model, resulting in a different mean for each new adjustment. This demands
specific control charts to monitor each adjustment in the control variables, thereby
hindering the process of constructing traditional control charts.

Regression charts with Normal response are extensiveness found in the statistics
and engineering literature, and it to use with Poisson response is growing in the literature.
The procedure for monitoring a response variable as function of control variable was
initially proposed by Mandel (1969) and was called “regression control chart” As an
extension of Mandel's proposal, Hawkins (1993) then proposed the regression-adjustment
chart in order to monitor processes with multiple control variables. This monitoring
procedure requires that a suitable regression model be implemented by using multiple
linear regressions, or by ordinary least squares (OLS) regression. Alternative models such
as generalized linear models (GLM) can be applied in the case of non-normally distributed
response variables. A GLM can be used to build models for any response variables from
many different distributions.

Skinner et al. (2003) proposed a model-based control chart for processes with
response variables following Poisson distributions. Jearkpaporn et al. (2003) proposed the
use of GLM-based control charts for monitoring Gamma distributed response variables. Shu
et al. (2008) reviewed the literature on regression control charts and their importance in
process data, since practical applications arise from regression models.

This paper presents the control charts for industrial processes that involve count
variables. A model-based procedure is used for deviation residuals, which is a likelihood
ratio statistic when control variables are measurable. We illustrated the performance of
Poisson model-based control charts through a case study based on a real process. Using
Monte Carlo simulations run-length properties of the proposed schemes are investigated.

2. Generalized Linear Models

The generalized linear model (GLM) is a class of regression models appropriate for
investigating the effect of control variables on a response variable in a non-normal
distribution. The GLM was developed by Nelder and Wedderburn (1972) and these models
are based on probability distributions with an unknown location parameter (6), assuming
that it belongs to the exponential family. This family includes the following distributions:
Normal, Binomial, Poisson, Gamma, Exponential and others. The probability density
function of the exponential family is most commonly seen, as in Eq. (1):

f;0,¢) = expla(¢p)™ — (¥ — b6) + c(y¢)] (1)

where a(-)b(-)c(-) are known functions, 6 is the location parameter and ¢> 0 is the
dispersion parameter of the probability distribution.

GLM models are structured around three components: (i) random component,
which identifies the probability distribution of the response variable in which y belongs to
the exponential family, (ii) a systematic component, which specifies the structure for the
control variables, which is used as a linear predictor 1, and (iii) Link function - describes
the functional relationship between the systematic component and value expected of
random component (the mean p of the response variable y).
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The systematic component that makes up the regression model is the structure of
control variables as a linear sum m and the relationship between variables in a GLM can be
expressed by a known function g(.), called the link function (McCullagh & Nelder, 1989),
which describes the functional relationship (connection) between the mean p and the linear
predictor (1), making the mean response variable as in Eq. (2),

gw) =n = Bo + Prx1 + -+ Brxy (2)

where B’s are unknown coefficients and k’s are control variables. Sant'Anna and Caten
(2010) suggest that the application of the GLM for modeling data process allows for better
precision of estimates, nonlinear relationship between the variables and predicting their
behavior.

2.1. The Poisson distribution

The model-based control chart is used in monitoring processes where the
response variables undergo frequent change due to adjustments in one or more control
variables. This model is based on the likelihood ratio statistic for a data set where the mean
is a function of a linear combination of control variables. In this case the Poisson
distribution is considered here, as it is known to model count of defects per items well.

Let y be a discrete random variable that measures the number of defects (y) in a
set independent data by determined time, y = 0, 1, 2,.... The probability of y (P{y; = y}) is
defined by the Poisson distribution,

-1
P(Y=y) =22

y!
The Poisson probability density function belonging exponential family is given

; A>0 (3)

Eq.4:
f; A) = explylogh — A + logy'] 4)

where A is the location parameter (mean) of the Poisson distribution, y the response
variable (Johnson et al. 2005). Consider S response variables, y;, yz,..., Vs distributed
according to a Poisson distribution and mean A = E(y). And these variables are function of a
set measurable control variables x;, Xz, ..., Xk with unknown coefficients £, f,.., b If a
logarithmic function is adopted as link function, we have that,

y~Poisson[exp(Bo + Bix1 + -+ + BieXi)] (5)

The coefficients B's of the GLM are estimated using the likelihood ratio statistic,
where the values are obtained when maximizes the log-likelihood function. The deviance
residuals are obtained from the likelihood ratio statistics and used in the model-based
control charts for monitoring and controlling the process, in order to detect the change in
mean or variability. Thus, we estimate the uncorrelated deviance residuals (ry) for the
Poisson regression model in Eq.7,

r§ = sign(y — 1){2[ylog(y/2) —y + 1]} (6)

where A is the estimated mean from the model being studied. McCullagh & Nelder (1989) show
that the deviance residuals v} are asymptotically normally distributed with zero mean and unit
variance.

1/2
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3. The Control Chart Approach

GLM-based models predict the response variables based on the control variables
and the use of deviance residuals estimated by maximum likelihood to monitor the
response variability. Response variables in industrial applications usually follow a non-
normal distribution with asymmetric shape, which compromises the precision of traditional
model-based control charts. Here we describe the GLM-based control chart for monitoring
Poisson response variables.

Deviance residuals are plotted in univariate Shewhart charts and the control limits
are defined from residuals mean (7:}) and variance sz(f,f) generated by historical data, as:

CL =75 + wys2(7y) (7)

where the constant w defines the width for control limits based on the average run length
until a false alarm is verified (ARLo). Epprecht et al. (2005) suggest that the frequency of
false alarms may be used for faster detection of control losses without raising the cost of
sampling. Skinner et al. (2003) state that deviance residuals capture modifications on the
response variables when adjustments on the control variables are performed, enabling
their use in charts for process monitoring.

3.1. Summary for application
The steps to implement model-based control charts are summarized here:

a) Obtain the historical data to industrial process;

b) Fit the GLM to the response and control variables from in-control historical
data (Eq. 5).

c) Obtain the deviance residuals (r}) for in-control process data from Eq. 6.

d) Obtain the control limits to control charts from Eq. 7.

e) Monitor the deviance residuals from future samples using the constructed
control charts.

4. Numerical Application

The implementation of the control charts for monitoring is illustrated through a
case study from an industrial process. The study was carried out in a plastic injection
company that manufactures and supplies plastic components to White Family, where the
effect of control variables on the defects in industrial “Headwaters” production was
assessed. The Company has three plants located in the states of Parand and Santa Catarina,
and it has over 500 employees and is the market of plastic injection components for 10
years. The customers of this product are the main wallet plant.

For the case study on plastic injection, the number of defects follows a Poisson
distribution with a mean (standard deviation) of 2.99 (+1.23) flaws per area. The control
variables of the process were: injection speed (x;) and injection pressure (xz).

We assumed that the variables x; and x; are independent and identically
distributed with Uniform distribution (0,3), and A; represents the mean given an
observation vector (xi; Xzi), where for each i =1,..,n, the value y; is simulated using the
Poisson distribution parameter A; (Eq. 3). This configuration allows representative change
to be generated in Y from shifts in the control variables. The goal was to monitor the
performance of a response (count) variable that varies according to two continuous control
variables.
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4.1. Empirical Study

Step 1:

From the 1000 historical data, we estimated the regression model to represent the
real industrial process of plastic injection, as the Eq. 8. The coefficients for the Poisson
model were estimated by maximum likelihood estimation based on Wald’s statistical test at
5% and have log link function. The coefficients are statistically significant to model (p<0.01)
and goodness of fit had better fit (AIC = 6875 and Deviance 1058.4 (997df)).

Ai~Poisson[exp(0.994875 + 0.996597x,; + 1.007360x,;)] (8)

Step 2:

The deviance residuals were calculated. Figure 1 shows the adjustment proximity
of their empirical distribution in relation to a QQ Normal probability plot. One will note that
the Poisson residuals (r}) distribution closely approximated the Normal curve as the
theory predicts.

Step 3:

We obtain symmetric control limits for the Poisson model [Eq. 7]. Figure 2 shows
the control chart obtained from 1000 in-control process data points for monitoring future
samples. One can observe that the relative frequency of outliers in control chart [3/1000 in
(a) and 4/1000 in (b)] is close to the theoretical probability of false alarms used in adjusting
the chart («=0.0027).

Sample Quantiles
(1]

R e ’7
3-’“ Poiszon Model

T T T
-3 -2 -1 0 1 2 3

Theoretical Quantiles

(a)

Figure 1. QQ Normal plot for deviance residuals from Poisson model

1274



Simpésio Brasileiro de Pesquisa Operacional 16 a 19

A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos publicos e/ou privados Natal/RN
.
L oo-fueL

Residuals
]

1 46 99 159 227 285 363 431 499 567 635 703 771 838 907 975

Samples

(a)

Figure 2. Poisson model-based control chart to in-control process

5. Performance Analysis

The performance analysis was development the Monte Carlo simulations to
calculate the run-length properties of the proposed control chart using computational
statistical program R® available in open source. We simulated 5000 replications for each
trial with n=1000 observations to analyze Poisson model-based control chart performance
in two scenarios: in-control and out-of-control processes. Cescato and Lemgruber (2011)
assert that the simulation method is reliable, since it presents results very similar to those
provided by the regression model.

For the in-control process, we evaluate the estimate average run-length until a
false alarm (ARLo), and for out-of-control, we evaluate the average run-length to detect
shifts imposed by coeficients model (ARL1). The shift sizes were in the £ (¢ =10, and 20))
and in the f; (A=0.1 and 0.3). The Table 2 shows the ARL performance for the models for in-
control and out-of-control simulated process. Notice in the first row that the ARLg
performance from the Poisson Model is close to the nominal value 370 (ARLoc=370 for
a=0.0027).

One can notice the performance in the Poisson model for identifying the simulated
disturbances, independent of the shift size imposed in 3, and (3;. As expected, the overall
results indicate that the Poisson model is good accuracy at detecting changes in count
response.

Table 1. ARL (and ARL standard errors) for Poisson model
False Alarm  ghjft Size  Shift Type Poisson Model

ARLo - - 344.97 (0.0548)
ARL; 1oy bo 6.79 (0.000088)
ARL, 0.1 B 4.34 (0.000031)
ARL, 20, Bo 2.21(0.000011)
ARL, 0.3 B 1.76 (0.0000045)
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6. Conclusions Remarks

A control chart using regression model is a quality tool for monitoring response
variables that vary as a result of modifications in the control variables. The tool consists in
building a regression model and estimating the control limits using the deviance residuals
from the model.

We applied control charts to monitor an industrial process with historical count
data from plastic injection process to evaluate the performance of Poisson model. A
performance study was conducted to evaluate the average run-length of control chart in
two different scenarios: in-control (ARL¢) and out-of-control (ARL1). In this study, different
shift sizes in coefficients Byand [; were imposed to demonstrate the improved
performance of the Poisson model-based control chart.

The relationship between the process variables and the regression model
estimated should be adequate for analyzing the industrial process and monitoring the
disturbance on the future count data.

Natural extensions to the research presented here would include the development
of an economic design for this control charts.
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