‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

A SIMPLE, ADAPTIVE BUBBLE SEARCH FOR IMPROVING HEURISTIC
SOLUTIONS OF THE PERMUTATION FLOW SHOP SCHEDULING PROBLEM

Tadeu Zubaran and Marcus Ritt
Departamento de Informadtica Teorica, Instituto de Informatica
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil
{tkzubaran, marcus.ritt}@inf.ufrgs.br

ABSTRACT

In this paper we study the application of Bubble Search, an extension of priority-based greedy
heuristics proposed by Lesh and Mitzenmacher (2006), as an improvement procedure for heuristic
solutions of the permutation flow shop scheduling problem. We compare the performance of Bubble
Search on different time scales and for different parameter settings. In particular, we demonstrate
the optimal parameter setting depends on the size of the instance, and propose a simple adaptive
extension of Bubble Search. Computational experiments demonstrate that the adaptive version out-
performs fixed parameter settings. They further show that adaptive Bubble Search is competitive
with the most effective constructive heuristics in a comparable time scale, and therefore is a promis-
ing technique for flow shop scheduling and related problems.

KEYWORDS. Flow shop scheduling. Heuristics. Bubble Search.

Combinatorial optimization

RESUMO

Neste artigo nds estudamos a aplicagdo do Bubble Search, uma extensdo de algoritmos baseados
em prioridade proposto por Lesh and Mitzenmacher (2006), como um procedimento de melhora
para solucdes heuristicas do problema permutation flow shop. N6s comparamos a performance
do Bubble Search em diferentes escalas de tempo e para diferentes conjuntos de valores para os
parametros. Em particular, nés demonstramos que os valores 6timos para parametros dependem do
tamanho da instincia, e propomos uma simples extensao adaptativa para o Bubble Search. Expe-
rimentos computacionais demonstram que a versao adaptativa tem performance superior para um
conjunto fixo de parametros. Elas também mostram que o Bubble Search adaptativo é competitivo
com as heuristicas construtivas mais efetivas em escala de tempo compardvel, e portanto ¢ uma
técnica promissora para o problema de agendamento flow shop e problemas relacionados.

PALAVRAS CHAVE. Escalonamento de tarefas, Heuristicas, Bubble search.

Otimizacao combinatéria

1847

i Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

1. Introduction

In the flow shop scheduling problem (FSSP) we have to find an optimal schedule to process a set
of jobs J = [n] on a set of machines M = [m]'. Job j € J has a processing time of p;; on
machine ¢ € M. Each machine can process only one job at time, and each job can be processed
only on one machine at any instant. The jobs have to be processed without preemption. In a flow
shop each job has to be processed on all the machines in the fixed order 1, ..., m. We consider no
explicit setup times, yet since there is no preemption we can assume that the setup is included in the
processing time. There are several possible objective functions, e.g. total flow time, or total lateness
or tardiness. Here we focus on the most common objective, which is to minimize the makespan

Chax, 1.€. the time of completion of the last job.

The permutation flow shop scheduling problem (PFSSP) is a widely studied variation of the FSSP.
This model restricts the schedules to permutation schedules. In a permutation schedule, all jobs
have to be processed on all machines in the same order, which reduces the number of possible
solutions to n!. According to the classification proposed by Graham et al. (1979) the PFSSP with
the objective to minimize the makespan is denoted by F' | prmu | Cpyax.

For more than two machines the PFSSP is a NP-hard problem (Kan, 1976) and since the seminal
work by Johnson (1954) who proposed a polynomial algorithm for the case m = 2 it has been
studied thoroughly. Instances of size useful in actual applications are usually not exactly solvable
in reasonable time, therefore several constructive and improvement heuristics have been proposed.
In particular we have the simple and surprisingly effective constructive heuristic NEH (Nawaz et al.,
1983) which is often used to generate initial solutions for more sophisticated approaches. Taillard
(1990) has shown that the NEH heuristic can be implemented in time O(n?m). It is well known
that tie-breaking rules are important for the performance of NEH-like heuristics. Kalczynski and
Kamburowski (2008) study such rules and propose the improved constructive heuristic NEHKKI1.
Extensions of the NEH-like heuristics, which try to overcome the fixed job order, have been studied
by Farahmand et al. (2009).

Framinan et al. (2003) considers adaptations of the NEH heuristic when the objective is other than
minimize the makespan. Other works with notable results are the ant colony algorithm of Rajendran
and Ziegler (2004), the CDS algorithm (Campbell et al., 1970), the work from Dannenbring (1977)
which performs a constructive heuristic followed by an improvement phase, the iterated greedy
algorithm from Ruiz and Stiitzle (2007), and the tabu search of Nowicki and Smutnicki (1996). For
more details on metaheuristic approaches to solve the PFSSP, we refer the reader to the excellent
surveys of Gupta and Stafford (2006) and Potts and Strusevich (2009).

In this work we study the application of Bubble Search as an improvement procedure for heuristic
solutions based on NEH for the PFSSP with the objective of minimizing the makespan. Our study is
motivated by the fact that Bubble Search probabilistically examines small modifications of a given
base order, and is therefore well suited for improving priority-based greedy algorithms.

The remainder of this paper is organized as follows. In Section 2 we explain the NEH heuristic of
Nawaz et al. (1983) and its best performing variants. Section 3 explains deterministic and random-
ized Bubble Search and variants thereof. In Section 4 we discuss the dependency of Bubble Search
on the size of the instance and propose a new variant called adaptive Bubble Search which takes
this dependency into account. We present the results of computational experiments in Section 5,
and conclude in Section 6.

'We use the notation [n] = {1,...,n}.

1848

‘ Simposio Brasileiro de Pesquisa Operacional 16 a 1 9
SBPO A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013

servicos pUblicos e/ou privados Natal/RN
Algorithm 1 NEH

Input: Processing times p;; Vi € M, j € N.
let Pj :=p1j + p2j + -+ + Pmy-

order the jobs such that P} > P, > --- > P,.
let o = () be the empty sequence.

for alljobs j =1,...,ndo

insert j in o in the sequence at the position where it yields the lowest makespan.
return o

2. Constructive heuristics for the PFSSP

NEH and its variants are greedy constructive algorithms. For a given job order, they start with an
empty schedule and insert the next job in that order into the current partial schedule at the position
which maintains the makespan of the current partial schedule shortest. Thus, such an algorithm
performs n insertions. When inserting the jth job, the algorithm must determine the makespan of
j — 1 candidate insertion points, which leads to an overall of (g) = O(n?) makespan computations.
Computing a makespan in O(nm) yields a O(n3m) algorithm. Taillard (1990) has shown that the
makespan of all insertion points of a fixed job can be computed in time O(nm) which reduces
the time complexity to O(n?m). The basic NEH algorithm as proposed by Nawaz et al. (1983)
processes the jobs in order of non-increasing total processing times Zie[m] pij, for j € [n] and is
shown in Algorithm 1.

Kalczynski and Kamburowski (2008) observed that the NEH heuristic can be improved by inserting
the jobs in the same order as proposed by Johnson (1954) for the two-machine permutation flow

shop. If we define
. m—1)
aj = E << 9 >+m—z>pm~

-2 (7))

1€[m)|

then NEHKKI1 insert the jobs in order of non-increasing ¢; = min{a;, 3]} Ties between different
insertion positions are broken by choosing the first job of minimum makespan, if ¢; = a;, and the
last job otherwise. NEHKKI1 reduces the average percent relative deviation from the best known
values in the instances proposed by Taillard (1993) by about 15%. The NEHKKI1 heuristic has
the additional property that it solves two-machine permutation flow shops optimally. We use the
result from the NEHKKI1 heuristic as the starting point for the improvement with Bubble Search,
as described below.

Farahmand et al. (2009) proposed several extensions to NEH-like heuristics. The variants that
perform best reinsert the previously inserted jobs at positions max{l,p — k},...,min{p + k, j}
again after the insertion of the jth job at position p, for a parameter k. Their algorithm FRB3 which
considers all previously inserted jobs is equivalent to FRB4,,. FRB4;, is shown in Algorithm 2. The
reinsertion of the jobs is designed to counteract the strong greediness of NEH. FRB4;, has worst
case time complexity O(kn?m).

The last algorithm we consider is called FRB5, also proposed by Farahmand et al. (2009), which
consists of the simple idea of performing the algorithm NEH followed by a full local search after
the insertion of each new job in the insertion neighborhood N;. This neighborhood considers
all possible reinsertion points of all jobs, similar to FRB3. The local search stops when a local
minimum is reached.

1849

‘ Simposio Brasileiro de Pesquisa Operacional 16 a 1 9
SBPO A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013

servicos pUblicos e/ou privados Natal/RN
Algorithm 2 FRB4,,

Input: Processing times p;; Vi € M, j € N.

let Pj :=p1j + p2j + -+ + Pmy-

order the jobs such that P} > P, > --- > P,.

let o = () be the empty sequence.

for alljobs j =1,...,ndo
insert j in o in the sequence at the position where it yields the lowest makespan.
for all positions ¢« = max{1,p — k},...,min{p + k,j} do

reinsert the job at position ¢ at the position which yields the lowest makespan.
return o

3. Bubble Search and its variants

Bubble Search and its variants have been proposed by Lesh and Mitzenmacher (2006) as simple
and flexible modifications procedures for priority-based construction algorithms. For a solution
space which consists of all n! permutations like in the PFSSP, visiting all of them exhaustively
will eventually find the optimal solution. The exhaustive search can be performed in any order.
In particular, exhaustive Bubble search proposes to visit all the permutations in order of increasing
Kendall-tau distance from a given permutation. Ties may be broken arbitrarily. Formally, for two n-
permutations 7 and 7’ the Kendall-tau distance, also known as the Bubble Sort distance, is defined
as

d(m,7') = Y [w(i) < x(j) and 7' (i) > 7' (5)].

1<i<j<n

It measures the number of transpositions necessary to transform 7 into 7’. Therefore d(7, ') €
[0, ()]
2

The search can be stopped at any time and will return best permutation found so far. The perfor-
mance of this truncated Bubble Search depends on a good initial order and a problem structure, that
makes more likely that good solutions are close to this initial order, such that it is more likely that
we have visited solutions with better quality than random ones.

A natural variation of this proposal is the randomized Bubble Search, in which we choose ran-
dom permutations with a probability that decreases with increasing Kendall-tau distance. Lesh and
Mitzenmacher (2006) suggest that we use a probability proportional to (1 — o) ~¢ where « is a pa-
rameter to be adjusted and d the Kendall-Tau distance to the base ordering. For @ = 0 randomized
Bubble Search degenerates into random sampling, and for @ = 1 — € it approximates a sampling in
a neighborhood that allows only swaps of two adjacent elements in the base order.

A further improvement of the randomized Bubble Search is the randomized Bubble Search with
replacement. This strategy replaces the current ordering by the new ordering, whenever the new
ordering is better than the current one. This turns randomized Bubble Search into a stochastic
search algorithm. Lesh and Mitzenmacher (2006) observed to Bubble search with replacement
typically outperforms the simpler variants of Bubble Search. They also have demonstrated that
Bubble Search can produce results that are competitive with similar GRASP-based algorithms.

4. An adaptive variant of Bubble Search

Randomized Bubble Search can be implemented by a very simple stochastic process. To select
a new ordering, we start with an empty ordering, and process the elements of the current base
ordering. With probability o we select the current element, remove it from the base ordering and
append it to the new ordering. In this case we start visiting the elements from the start. Otherwise,

1850

‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

Algorithm 3 Bubble Search sampling
Input: A base permutation ¢*, a probability a.
let o = () be the empty sequence.
fori=1,...,ndo
ji=1
while no element selected do
with probability c: select element o7
otherwise: j :=j mod n+ 1

remove o from o™ and append it to o
return o

with probability 1 — «, we continue with the next element of the current base ordering, cycling as
necessary. This process is repeated until the base ordering is empty and is shown in Algorithm 3.

This process guarantees that an ordering of Kendall-tau distance d is selected with probability pro-
portional to (1 — a)¢ (Lesh and Mitzenmacher, 2006). However, since the range of the Kendall-tau
distance increases with n, the probability of selecting orderings with a fixed distance from the cur-
rent ordering decreases with increasing n. We will show below that this behaviour can affect the
scalability of Bubble Search adversely. We therefore propose to adjust « as a function of n as
follows.

Consider the probability P[d = 0] that Algorithm 3 returns ¢* on input o*. We have
Pld=0=a(l+(1—-a)"+(1—-a)"+..)
xa(l+(1—a)" 1+ 1—a)? D4)
x-ooxa(l+(l—a)P+(1—-a)*+..)x1

Therefore, we propose to compensate this behaviour by setting o = 04(1)/ " for some base probability
g which has to be calibrated. We call this approach adaptive randomized Bubble Search. Adaptive
Bubble Search can be applied with or without replacement.

5. Computational results

In this section we report on computational experiments done with several variants of Bubble Search
starting from the base ordering obtained by the NEHKKI1 algorithm presented in Section 2. All
experiments have been done on a PC with an Intel Core i7 930 processor running at 2.80 GHz and
12 GB of main memory. In the experiments only one core of the processor has been used. We have
implemented the NEHKKI1 algorithm using the enhancements proposed by Taillard (1990) to run
in O(n?m) and the standard and adaptive variant of randomized Bubble Search in C++. The code
has been compiled with GNU C++ compiler version 4.6.3 and maximal optimization.

For our test use the well known and widely used set of instances proposed by Taillard (1993). The
test set consists of 12 groups of instances with the number of jobs varying between 20 and 500,
and the number of machines between 5 and 20. Each group contains 10 instances, with processing
times drawn uniformly at random in the interval [1, 99]. The current best known values for all 120
instances can be obtained at Taillard (2013).

S.1. An analysis of the /N7 neighborhood on the instance Carlier5

To decide the best acceptance criterion for Bubble Search with replacement we first conducted an
analysis of the N; neighborhood. The analysis has been done in the instance 5 proposed by Carlier

1851

‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

Table 1. Characterization of all solutions of instance Carlier5.

Type of solution Number %
Isolated 0 0
Strict local maximum 0 0
Plateau 0 0
Local maximum 6 0.00017
Strict local minimum 5 0.00014
Slope 134784 3.71
Local minimum 1743 0.048
Ledge 3492262 96.24

(1978), since it has only 10 jobs and thus can be analyzed exhaustively. A classification of the
10! = 3.628.800 solutions can be seen in Table 1.

We can observe that the majority of the solutions are ledges (i.e. they have better, equal, and worse
neighbors), followed by slopes. All three optimal solutions of value 7720 are non-strict local min-
ima. Based on this analysis, we opted to not only accept solutions that are strictly better in Bubble
Search with replacement, but also solutions of equal value. Preliminary tests have shown that this
strategy performs significantly better than accepting only strictly better solutions.

5.2. Parameter adjustment

We next investigated the dependency of randomized Bubble Search with replacement on the pa-
rameter . We selected the first instance in each group, and ran Bubble Search with a time limit of
nm/2 x 60ms for € {0.6,0.7,0.8,0.9,0.95}. Each test was replicated three times. The results of
these tests can been seen in Table 2. It reports for each value of « the average percent relative devi-
ation from the best known value over all 12 test instances. The smallest deviations are highlighted
in boldface.

The overall best value is & = 0.9 with a relative deviation of 1.41. There is however a clear
tendency to perform better with larger values of « for an increasing number of jobs. We therefore
chose a base value of oy = 8 x 10~* and ran adaptive Bubble Search with o = aé/ ". The choice
of o fixes @« = 0.7 for n = 20. The results for adaptive Bubble Search can be seen in the last
column (Adapt). Adaptive Bubble Search performs clearly better than any Bubble Search with a
fixed alpha, obtaining an overall average percent relative deviation of 1.24. The relative deviation
for each instance size is close to the best for the individual « values.

Table 2 also contains in column “NEHKK1"” the relative deviations of the initial solutions obtained
by NEHKK1 from the best known value. We can see that randomized Bubble Search with replace-
ment has the potential to substantially improve over the values found by NEHKKI1.

5.3. Experiments on the full test set

Based on the parameter adjustment above, we ran adaptive Bubble Search on all 120 instances. We
tested the method on three time scales, namely nm /2 x 0.5ms, nm/2 x 8ms, and nm/2 x 60ms
to evaluate independently its utility for quickly improving initial solutions, as well as its limit in the
long term. Each test was replicated five times.

The results of these experiments can be seen in Table 3. It reports the average percent relative
deviation from the best known values for each group of instances for the original NEH heuristics,
the improved NEHKKI1, the algorithms FRB3, FRB49, and FRBS5 proposed by Farahmand et al.
(2009), and for Bubble Search for the three time scales above.

1852

‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

Table 2. Results for randomized Bubble Search with replacement for different values of «.

a (%)

n m NEHKKI 60 70 80 90 95 Adapt.
20 5 1.41 0.00 0.00 0.00 0.00 0.00 0.00
20 10 6.19 046 0.51 091 1.10 1.41 0.52
20 20 466 134 1.00 123 1.61 2.25 1.04
50 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 10 595 502 451 275 149 284 2.66
50 20 522 448 397 324 3.03 3.10 3.14

100 5 0.38 0.00 0.00 0.00 0.00 0.00 0.00
100 10 1.32 0.88 0.63 0.18 0.20 0.16 0.16
100 20 547 547 543 5.07 385 3.30 341
200 10 097 0.68 033 0.13 0.09 0.21 0.16
200 20 322 322 322 322 292 241 2.24
500 20 271 271 2791 271 257 214 1.54
Averages 312 202 186 1.62 141 1.49 1.24

Values are averages over three replicates.

Table 3. Results for adaptive randomized Bubble Search with replacement for time scales
nm/2 X to, to € {0.5,8,60} on the complete Taillard instance set.

Bubble Search BM
n m NEH NEHKKI FRB3 FRB4;, FRB5 0.5 8 60 8

20 5 335 2.81 0.89 1.12 1.08 0.83 0.28 0.22 0.29
20 10 5.02 443 1.86 1.79 219 249 1.77 1.02 1.53
20 20 3.73 334 218 2.08 1.80 224 158 1.21 1.54
50 5 084 0.67 0.22 030 0.19 021 0.13 0.09 0.13
50 10 5.12 546 2.99 2.89 225 390 276 2.00 2.77
50 20 6.32 6.25 3.38 4.05 338 508 458 422 458
100 5 046 043 0.21 028 0.16 0.20 0.12 0.08 0.12
100 10 213 1.78 0.94 122 080 124 0.84 056 0.85
100 20 5.23 523 290 373 251 458 4.07 347 4.07
200 10 1.43 1.11 0.52 0.60 038 079 047 040 048
200 20 4.52 410 241 2.95 1.84 344 295 240 296
500 20 2.24 2.04 1.06 140 072 1.67 134 1.12 1.34
Averages 3.37 3.14 1.63 1.87 144 222 174 140 1.72

Values are averages over three replicates and ten instances.

1853

‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

The experiments confirm the potential of Bubble Search to produce good solutions and can consid-
erably improve over the initial solution obtained by NEHKK1. As expected, the average quality of
the solutions improves over time from 2.22% to 1.40%. In average over all instances, in the largest
time scale, Bubble Search is able to outperform the best re-insertion heuristic FRBS, although only
by a small margin. In the middle time scale its values are competitive in quality with the con-
struction heuristics FRB3 and FRB4,5. For very short execution times, it still improves the initial
values of NEHKK1 by about 1%, but produces about 0.4% to 0.6% higher deviations than other
constructive heuristics.

These results have to be judged relative to the computational effort of the different methods. The
result of Farahmand et al. (2009) were obtained on a PC with a Pentium IV processor running at
3.2 GHz, which is comparable to but slower than our machine. The time of Bubble Search, on
the other hand, is dominated by the computation of the new makespan, and is not fully optimized,
since the application of Taillard’s improvements are not straightforward to apply to it. The average
execution time of FRB3, FRB4,5 and FRBS5 as reported by Farahmand et al. (2009) is 2.43, 0.20,
and 4.88 seconds, respectively, while Bubble Search needs 0.31, 4.51, and 31.60 seconds on the
three time scales. Thus, Bubble Search on the small time scale is comparable to FRB4,5, on the
middle time scale to FRB3 and FRBS.

Looking at the individual instance groups, we can observe that Bubble Search outperforms FRB3
in eight of the 12 groups, in particular for the instances of smaller size. The same holds for three
of the smaller instance groups when comparing the short time scale with FRB4;5. This indicates
that Bubble Search may have a potential advantage on short time scales and small instances. For
large instances Bubble Search takes more time to obtain good results. This can be explained by
the stochastic component of the method, and the need to compute the makespan of the perturbed
orderings from scratch.

We finally briefly evaluated if a milder acceptance criterion would be able to improve the results
for Bubble Search in the middle time scale. To this end, we used a Metropolis acceptance criterion,
that for temperature 7" accepts solutions that are worse by A with probability e =2/, We followed
Ruiz and Stiitzle (2007) and chose a fixed base temperature of p/10 x 0.5, where p is the average
processing time over all machines and jobs. We adjusted this temperature such that it is about ten
times lower for the largest instances. We ran Bubble Search for 750nm iterations, and then enabled
the Metropolis acceptance criterion. The result of this test can be seen in the final column (BM) of
Table 3. The value when using the extended acceptance criterion is better than Bubble Search in the
middle time scale, but only slightly. In two of the smaller instances, it obtains better results earlier.
In summary, Bubble Search seems relatively robust with respect to the acceptance criterion.

6. Conclusion

In this paper we have investigated the utility of Bubble Search for improving solution for the flow
shop scheduling problem. We have analyzed the dependence of Bubble Search on its parameter o
and proposed a new adaptive variant of Bubble Search, that scales the probability of accepting a
solution of Kendall-tau distance d in accordance with the size of the instance.

In computational experiments we could demonstrate that for flow shop scheduling the adaptive
variant outperforms the regular randomized Bubble Search with replacement. The experiments
show also that Bubble Search is a promising technique for obtaining results comparable to the best
constructive heuristics, especially on small instances.

To realize the full potential of Bubble Search further research is necessary. Based on the computa-
tional results, it seems most promising for improving already well optimized instances. For larger
instances it should be combined with more direct techniques, for obtaining good starting solution

1854

‘ Simpésio Brasileiro de Pesquisa Operacional 16 a 19
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

in a short time. Applying Bubble Search to reduced neighborhoods (e.g. N5) and for perturbing
solutions may be promising research avenues.

References

Campbell, H. G., Dudek, R. A., and Smith, M. L. (1970), A heuristic for the n job, m machine
sequencing problem., Management Science 16(10).

Carlier, J. (1978), Ordonnancements a contraintes disjonctives, R.A.LR.O. Recherche opera-
tionelle/Operations Research, 12(4):333-351.

Dannenbring, D. G. (1977), An evaluation of flow shop sequencing heuristics., Management
Science July 1977 vol. 23.

Farahmand, S., Ruiz, R., and Boroojerdian, N. (2009), New high performing heristics for mini-
mizing makespan in permutation flowshops, Omega, The International Journal of Management
Science.

Framinan, J. M., Leister, R., and Rajendran, C. (2003), Different initial sequences for the heuris-
tic of nawaz, enscore and ham to minimize makespan, idletime or flowtime in the static permu-
tation flowshop sequencing problem, International Journal of Production Research, 41(1):121-
148.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. H. G. R. (1979), Optimization and
approximation in deterministic sequencing and scheduling, Annals of Discrete Mathematics,
5:287-326.

Gupta, J. and Stafford, E. (2006), A comprehensive review and evaluation of permutation flow-
shop heuristics, Eur. J. Oper. Res., 169(3):699-711.

Johnson, S. M. (1954), Optimal two- and three-stage production schedules with setup times in-
cluded., Naval Research Logistics Quarterly.

Kalczynski, P. J. and Kamburowski, J. (2008), An improved neh heuristic to minimize makespan
in permutation flow shops, Computer & Operations Research 35 3001-3008.

Kan, R. (1976), Machine Scheduling Problems: Classification, Complexity and Computations,
Martinus Nijhoff, The Hague, The Netherlands.

Lesh, N. and Mitzenmacher, M. (2006), Bubblesearch: A simple heuristic for improving priority-
based greedy algorithms, Information Processing Letters, 97(4):161 — 169.

Nawaz, M., Enscore Jr, E. E., and Ham, L. (1983), A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem, Omega, 11(1):91-95.

Nowicki, E. and Smutnicki, C. (1996), A fast tabu search algorithm for the permutation flow-shop
problem, Eur. J. Oper. Res., 91(1):160-175.

Potts, C. N. and Strusevich, V. A. (2009), Fifty years of scheduling: a survey of milestones, J.
Oper. Res. Soc., 60:541-S68.

Rajendran, C. and Ziegler, H. (2004), Ant-colony algorithms for permutation flowshop schedul-
ing to minimize makespan/total flowtime of jobs, European Journal of Operational Research,
155(2):426 — 438, Financial Risk in Open Economies.

1855

- Simposio Brasileiro de Pesquisa Operacional 16 a 1 9
A Pesquisa Operacional na busca de eficiéncia nos Setembro de 2013
SBPO servicos pUblicos e/ou privados Natal/RN

Ruiz, R. and Stiitzle, T. (2007), A simple and effective iterated greedy algorithm for the permu-
tation flowshop scheduling problem, European Journal of Operational Research, 177(3):2033 —
2049.

Taillard, E. (1990), Some efficient heuristic methods for the flow shop scheduling problem, Euro-
pean Journal of Operations Research 47 3001-3008.

Taillard, E. (1993), Benchmarks for basic scheduling problems, European Journal of Operations
Research 64 278-85.

Taillard, E. (2013), Flow shop instances, http://mistic.heig-vd.ch/taillard/
problemes.dir/ordonnancement .dir/ordonnancement .html.

1856

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

	Introduction
	Constructive heuristics for the PFSSP
	Bubble Search and its variants
	An adaptive variant of Bubble Search
	Computational results
	An analysis of the N1 neighborhood on the instance Carlier5
	Parameter adjustment
	Experiments on the full test set

	Conclusion

