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ABSTRACT

In this work, we describe the development of a stochastic programming model
aimed at determining an optimal activity crashing plan within a project management
context. In particular, we are interested in selecting a subset of actions to be carried out
in order to minimize the sum of costs incurred due to activity crashing and those related
with a project’s (stochastic) completion date. A particular feature of our approach is the
incorporation of decision-dependent uncertainties into the model and solution procedure,
which characterizes it as part of a difficult and rarely studied class of problems known as
stochastic programs with endogenous uncertainty.

KEYWORDS. Stochastic Programming, Project Management, Endogenous Un-
certainty, MP - Probabilistic Models.
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1. Introduction
Significant delays and over-budget costs are often a reality across several differ-

ent types of projects. Various important economic activities rely on the development of
massive infrastructure which requires huge investments, the combination of distinct skills
and expertise and the performance of possibly thousands of activities. That is the case, for
example, in the construction of power plants for energy generation, offshore platforms for
oil exploration and production and refineries that process raw materials into useful prod-
ucts. From a project manager’s viewpoint, the situation is worsened by the fact that there
are complex interdependecies among activities, various contractors carrying out different
segments of the project and a potentially large number of risk factors that might interfere
with original plans.

Within this context, activity crashing refers to the allocation of (extra) resources to a
given task so as to minimize its expected duration or, alternatively, maximize the likelihood
of its completion within a certain time frame. Such resources may include, for example, the
assignment of additional or more skilled workers, outsourcing to subcontractors and/or the
use of extra equipment to perform a given amount of workload. Obviously, the allocation
of additional resources requires investments that must be carefully assessed in order to
properly evaluate the trade-off between costs involved in activity crashing and those that
may result from delays in project completion and, possibly, associated penalties.

In this work, we describe the development of a stochastic programming model
aimed at determining an optimal activity crashing plan - meaning the subset of actions
to be carried out in order to minimize the sum of costs incurred due to activity crashing
and those related with the project (stochastic) completion date. A particular feature of
our approach is the incorporation of decision-dependent uncertainties into the model and
solution procedure, which characterizes it as part of a difficult and rarely studied class of
problems known as stochastic programs with endogenous uncertainty.

The remaining of the paper is organized as follows: section 2 analyzes previous
work on related problems and highlights our contributions, section 3 describes the mathe-
matical model of the problem, identifies some of the difficulties that prevent its solution by
traditional methods and presents the solution methodology – first introduced in (Flach and
Poggi, 2010) – and section 4 presents computational results that illustrate the application
of the proposed methodology. Finally, section 5 details the conclusions and directions of
current / future work.

2. Literature Review
Identify the most critical activities of a project (i.e., the activities that requires a

special attention in order to successfully complete the project) is one of the most important
roles on project management research. The first works on this subject were related with
two important techniques, the critical path method (CPM), and the program (or project)
evaluation and review technique (PERT), (Kelley and Walker, 1959) and (Fazar, 1959) re-
spectively. Both techniques are based on the identification of the project’s critical path, the
set of activities that prevent the project to finish earlier, (Kelley, 1961). Any delay on these
critical path activities causes a delay on the project completion date. The main difference
between PERT and CPM is that PERT estimates the duration of each activity based on
the mean of a beta probability distribution determined by three estimates, optimistic, most
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likely and pessimistic duration, while CPM only requires a unique duration estimate for
each activity. Besides its recognized importance these methods are limited, as discussed in
(Moder and Davis, 1983).

The study of the activity crashing problems (see section 1) was a natural exten-
sion of the research motivated by the development of the traditional project management
methods CPM and PERT. An important problem of this class is the deterministic discrete
time-cost problem (DDTCP): given the project’s set of activities with deterministic dura-
tions and precedence relations, a set of discrete 0-1 activity crashing opportunities (crash-
ing measures) with costs associated, a project due date and a penalty function for delays on
project’s completion date, what is the optimal crashing plan that minimizes the project’s
cost? In (Walter J. Gutjahr, 2000), they show that DDTCP is a NP-Hard problem. Dynamic
Programming and Branch and Bound are the main methods applied to produce practical
solutions to the DDTCP (see (Panagiotakopoulos, 1977) and (Hindelang and Muth, 1979)).

Another research branch of deterministic activity crashing problems deals with the
time-cost trade-off as different objective functions. This approach results in multi-objective
problems, where does not exist a single solution that simultaneously optimizes each objec-
tive, so the optimization searches for a set of the so called non-dominated solutions (see
(Roy and Vincke, 1981)). The work of (Doerner et al., 2008) apply different metaheuristic
methods to solve one problem of this class. In (Rahimi and Iranmanesh, 2008) they explore
the multi-objective flexibility and add another trade-off dimension (adding a new objective
function), the quality, and also apply a metaheuristic method to solve the problem.

One weakness of modeling activities durations as deterministic values is that the
time required to complete an activity is only known with certainty after its termination,
(Gutjahr et al., 2000). A common approach to deal with this uncertainty is to model activ-
ities durations as independent random variables. As an example, classic PERT models the
duration of each activity by a beta probability distribution determined by the three estimates
described before. Despite PERT assume that activities durations are random variables, the
method itself only uses deterministic values (the beta distribution means). The first works
to directly approach the uncertainty used basically Monte-Carlo simulation (see (Slyke and
Richard, 1963)) to estimate project duration and cost.

This uncertainty nature of activities durations is also studied on activity crash-
ing problems. As an example, the stochastic discrete time-cost problem (SDTCP) is the
stochastic version of DDTCP, the only difference between them is that on SDTCP activ-
ities durations are modeled as independent random variables. In (Gutjahr et al., 2000)
they propose an application of the stochastic branch and bound method (see (Norkin and
Ruszczyński, 1998)) to the SDTCP. Another common approach to solve SDTCP is to com-
bine Monte-Carlo simulation with heuristic methods, as in (Walter J. Gutjahr, 2000).

Stochastic activity crashing problems are not limited to the discrete case, some au-
thors work with the assumption that activities can be continuously crashed. In (Rahimi and
Seifi, 2009) they solve a problem of this class using a sequential quadratic programming
(SQP) framework. Other authors claim that the use of mathematical programming methods
for activity crashing in a real project scenario is impractical. In (Ashok and Jibitesh, 2011)
they list a set of difficulties of activity crashing in the maintenance of a thermal power
plant, and propose a qualitative analysis framework to identify the best activities to crash.
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It should be clear that an activity crashing optimization analysis for a real project
scenario depends on the underlying problem due to multiple modeling decisions. One mod-
eling decision example is between discrete or continuous crashing. The main contribution
of our work is to provide a flexible mathematical modeling approach that can be used to
solve many different stochastic activity crashing problems, depending only on how do you
model your first- and second-stage decisions, as we explain in detail on next section.

3. Mathematical Model and Proposed Methodology
Mathematically, the problem is formulated by assuming we are given an activity

network which describes the precedence relationships among different tasks of the project.
Such network is represented by a graph and the costs associated with its edges denote the
duration of each particular activity. As previously mentioned, the objective is to determine
the optimal set of activities to be crashed in such as way as to minimize total incurred
costs – given by the sum of the costs involved in crashing selected activities (crashing
costs are denoted by ra) and those related with the project’s completion date – which may
include penalties (benefits) associated with project completion after (before) a particular
target deadline, as represented by function H(·) assumed to be convex piecewise linear in
the project duration. First-stage constraints might include, for example, budget limitations
or minimum / maximum investment levels in any particular activity or group of activities
and second-stage constraints might be as simple as those that define the project’s duration
associated with each scenario.

Min
∑
a∈A

raxa +
∑
s∈S

ps · H (ys) (1)

s.t.

Ax ≤ b (2)
Wsys = hs ∀s ∈ S (3)

ps =
∏
a∈A

(pNas + (pCas − pNas) · xa) ∀s ∈ S (4)

x ∈{0, 1}|A|; y ∈ R+ (5)

where:

• ξas - duration of activity a in scenario s;
• pNas - probability of the duration of activity a in scenario s, given that no investment

is made on its crashing (i.e., P (ξa = ξas|xa = 0));
• pCas - probability of the duration of activity a in scenario s, given that a investment

is made on its crashing (i.e., P (ξa = ξas|xa = 1));
• ps - continuous variable equal to the probability of scenario s;
• xa - binary variable which is equal to 1 if an investment is to be made on crashing

activity a, 0 otherwise;
• ys - vector of second-stage variables associated with scenario s.

The formulation presented above characterizes a mixed-integer nonlinear program
(MINLP) whose exact solution is not to be expected from traditional solution methods.
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Specifically, three obstacles make this problem particularly hard: (i) non-linearity associ-
ated with the product of first- (scenarios’ probabilities) and second-stage variables (critical
path associated with each particular scenario of activities’ durations), (ii) non-linearity as-
sociated with the computation of the probability of each scenario and (iii) impossibility of
using traditional scenario generation techniques as they rely on the a priori knowledge of
the random variables’ probability distributions.

The application of the reformulation scheme proposed in (Flach and Poggi, 2010)
to the activity crashing problem, presented next, provides an alternative to determining a
provably optimal solution to the problem:

Min
∑
a∈A

raxa +
1

|S|
∑
s∈S

gs

(
p̂s
pINI
s

)
(6)

s.t. Ax ≤ b (7)

ws =
∑
a∈A

(ln(pNas) + (ln(pCas)− ln(pNas)) · xa),∀s ∈ S (8)

p̂s ≥ αk + βk · ws, ∀s ∈ S,∀k ∈ K (9)
p̂ ∈ R+, w ∈ R (10)

x ∈ {0, 1}|A| (11)

where:

• gs - value of the optimal solution of the second-stage problem defined for each
scenario s;
• K - set of linear constraints that approximate the exponential function;
• αk, βk - coefficients of the k-th segment used to approximate the exponential func-

tion;
• ws - continuous variable equal to the natural logarithm of the probability of scenario
s;
• p̂s - continuous variable equal to the approximation of the probability of scenario s.
• pINI

s - probability of sampled scenario s, calculated based on the initial probability
distribution of the availability of activity duration, i.e. pINI

s =
∏

a∈A p
N
as .

As in (Flach and Poggi, 2010), the fact that only a small number of constraints
which provide an approximation to the exponential function (p̂s ≥ αk + βk · ws) will be
binding at the optimal solution allows for the development of a cut generation algorithm
that progressively adds cuts to the problem until a solution with gap less than or equal to a
small constant ε is found:
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Algorithm 1 Cut Generation Algorithm
1: Initialize the set of cuts K = ∅, the best solution best = ∅, the lower bound LB =
−∞, the upper bound UB = +∞ and define the maximum percentage error ε

2: while |(UB − LB)/UB| > ε do
3: sol(x∗a, w

∗
s) = Solve model P with the currently defined set of cuts K

4: LB = v(sol) . Set LB to the objective value of the current P solution (sol)
5: origV =

∑
a∈A rax

∗
a +

1
|S|
∑

s∈S gs

(
exp(w∗

s )
pINI
s

)
. Calculate objective value of sol in

the original problem
6: if origV < UB then
7: UB = origV
8: best = sol
9: end if

10: for each scenario s ∈ S do
11: Add cut αk = exp(w∗s) · (1− w∗s) and βk = exp(w∗s) to cut set K
12: end for
13: end while
14: return best

4. Experiments and Computational Results
We focused our experiments on the stochastic activity crashing problem under the

following assumptions:

• Activity network: the activity network follows the PERT model, where we
have a set of activities A, precedence relations between them and activities dura-
tions are independent random variables modeled by a beta probability distribution
parametrized by the three duration estimates – optimistic (op), most likely (ml) and
pessimistic (pe).
• Activity crashing: the crashing effect in the probability distribution of an activity

is assumed to turn the most likely estimate to be equal to the optimistic one, so
the distribution changes from PERT (op,ml, pe) to PERT (op, op, pe). Figure 1
shows an example of activity crashing probability distribution change, the almost
half-triangular shape represents the probability distribution of the activity duration
when this activity has been subject to a crashing investment, while the other curve
represents the original distribution. This figure was generated by sampling 10000
values of each distribution and building the respective histograms.
• First-stage constraints: the only constraint considered on first-stage was a budget

constraint. Given a total budget b to invest on the crashing plan and the crashing
resources cost of each activity (ra) we have the constraint

∑
a∈A ra · xa ≤ b.

• Objective function: the objective considered was the minimization of project com-
pletion date, so for each scenario s, gs is equivalent to the critical path size (or the
time required to complete the project) for the scenario s.

Computational tests were performed to analyze the performance of the proposed
algorithm. All tests were conducted on a Intel Core i5-3360M PC with 4 cores of 2.80GHz
and 8 GB of RAM. Models and algorithms were implemented using python programming
language and solved by IBM(R) ILOG(R) CPLEX(R) 12.5.0.0.
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Figure 1. Pre- and post-crashing duration histograms of an activity with 8, 10 and 14 as
duration estimates.

The tests were performed on the 10 activities instance with activity network de-
scribed on table 1. This instance was inspired by an instance extracted from PSPLib,
(Kolisch and Sprecher, 1997). We also used unit cost for the crashing activities costs and
a budget of three units. This is equivalent to look to the best subset of three activities to
crash in order to minimize the expected value of project completion date.

Activity Optimistic Most Likely Pessimistic Predecessors

A 8 10 14
B 16 20 28 A
C 4 5 7 B, H
D 23.2 29 40.6 C
E 23.2 29 40.6 D, G, H
F 12 15 21 A
G 4 5 7 C, F
H 12 15 21 A
I 12 15 21 D
J 12 15 21 I

Table 1. Test instance based on an instance from PSPLib

Once a crashing plan has been determined (i.e., variables xa) the probability dis-
tribution of each activity is known (i.e., PERT (op,ml, pe) for activities with xa = 0 and
PERT (op, op, pe) for activities with xa = 1), which then completely defines the proba-
bility distribution of a project’s total duration – though it might be very difficult to devise
a closed formula for it. In order to overcome this difficulty and consistently estimate the
distribution of project duration, we used Monte-Carlo simulation. The process consists in
sampling duration scenarios (i.e., vectors with a duration for each activity, sampled from
the corresponding probability distributions of activities’ durations) and calculating the as-
sociated project completion date for each one of them, then allowing us to determining its
mean, standard deviation and plotting a histogram.
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Figure 2. Probability distributions of project completion date pre- and post-crashing deci-
sions.

To set a benchmark for our algorithm, we performed a brute force analysis running
the Monte-Carlo simulation, previously described, with N1 = 10000 scenarios for each
possible crashing plan (i.e., each subset of three activities to crash). Then we ranked each
plan by the simulation mean value. A similar analysis is also done in the works for the
SDTCP, (Gutjahr et al., 2000) and (Walter J. Gutjahr, 2000). The best plan according to this
analysis was to invest in crashing the activities B, E and I, wich results in an estimated mean
of 73.34 for the project completion date. Without any crashing investment the estimated
mean, also from the Monte-Carlo simulation, was 78.69.

Regarding our method, we used an initial sample of |N2| = 1000 scenarios to build
the model, sampled from the initial distributions, and then we executed our code to solve
this model. The method found as best crashing plan to invest in crashing activities A, E and
I. Figure 2 displays the probability distribution of project completion date for the crashing
plan found by our method for the instance in case, crashing of activities A, E and I, and the
original probability distribution without any crashing. These histograms were obtained also
by Monte-Carlo simulation with N = 10000 scenarios. The estimated crashing mean of
the solution found had a value of 74.5, which has a GAP of only 1.58% from the solution
found by brute force (i.e. (74.5 − 73.34)/73.34), but obtained using considerably less
computational time.

Giving a close look in both solutions, brute force and our approach, we notice that
they disagree only on the first activity to crash, B and A respectively. That disagreement
does not result in great impact on the expected value of the project completion date, as
showed on the previous paragraph. But an interesting aspect to notice on both solutions
is that they both agree on the crashing investment in activity E. This is a tricky decision,
because E is not on the critical path of the network formed with only most likely durations
(i.e., A→ B→ C→ D→ I→ J, see Figure 3). The importance of E appears only consid-
ering the uncertain nature of activity durations, the use of traditional methods will not even
consider invest in E. This result also enforces the quality of our approach, showing that
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Figure 3. Schedule of instance from table 1 considering most likely durations. Critical path
activities shaded.

our method can identify this kind of complex decisions that are required in an uncertainty
environment.

5. Conclusions
In this work, we described the development of a stochastic programming model

aimed at determining an optimal activity crashing plan within a project management con-
text. The problem we considered is part of a difficult and rarely studied class of problems
known as stochastic programs with endogenous uncertainty, where decisions affect the
probability distributions of random variables.

Results presented in section 4 have encouraged our modelling approach. For il-
lustration purposes we dealt with a small instance of the problem, which have allowed us
to evaluate the quality of the obtained solution by comparing it with a brute force anal-
ysis combined with a Monte-Carlo simulation – which obviously cannot be expected to
be computationally feasible in real instances of the problem. Another interesting result –
particular to the instance used as an example – was the identification of the importance of
investing in activities that may not lie on the project’s original critical path, which would
probably not be determined by traditional methods still used in practice.

Results motivate future research on the proposed method in order to allow for the
solution of larger instances of the problem. Improving the solution algorithm and the ini-
tial scenarios sampling to build the model are two promising research directions currently
being explored.

References
Ashok, M., B. S. and Jibitesh, M. (2011). Activity crashing in shutdown maintenance

through qualitative assesment: a case study. Advances in Production Engineering &
Management, 6(4):239–248.

Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., and Stummer, C. (2008). Nature-
inspired metaheuristics for multiobjective activity crashing. Omega, 36(6):1019 – 1037.

Fazar, W. (1959). Program evaluation and review technique. The American Statistician,
13(2):10.

2237



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

Flach, B. and Poggi, M. (2010). On a class of stochastic programs with endogenous
uncertainty: Theory, algorithm and application. Technical report.

Gutjahr, W. J., Strauss, C., and Wagner, E. (2000). A stochastic branch-and-bound
approach to activity crashing in project management. INFORMS Journal on Computing,
12(2):125–135.

Hindelang, T. J. and Muth, J. F. (1979). A dynamic programming algorithm for decision
cpm networks. Operations Research, 27(2):225–241.

Kelley, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Opera-
tions Research, 9(3):296–320.

Kelley, Jr, J. E. and Walker, M. R. (1959). Critical-path planning and scheduling. In
Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer
conference, IRE-AIEE-ACM ’59 (Eastern), pages 160–173, New York, NY, USA. ACM.

Kolisch, R. and Sprecher, A. (1997). Psplib-a project scheduling problem library: Or
software-orsep operations research software exchange program. European Journal of
Operational Research, 96(1):205–216.

Moder, J.J., P. C. and Davis, E. (1983). Project management with cpm, pert and prece-
dence diagramming.

Norkin, V., P. G. and Ruszczyński, A. (1998). A branch and bound method for stochastic
global optimization. Mathematical Programming, 83(1-3):425–450.

Panagiotakopoulos, D. (1977). A cpm time-cost computational algorithm for arbitrary
activity cost functions. Infor, 15(2):183–195.

Rahimi, M. and Iranmanesh, H. (2008). Multi objective particle swarm optimization
for a discrete time, cost and quality trade-off problem. World Applied Sciences Journal,
4(2):270–276.

Rahimi, M. and Seifi, A. (2009). An embedded simulation approach for optimal activity
crashing in stochastic networks. In Computers Industrial Engineering, 2009. CIE 2009.
International Conference on, pages 1827–1831.

Roy, B. and Vincke, P. (1981). Multicriteria analysis: survey and new directions. Euro-
pean Journal of Operational Research, 8(3):207–218.

Slyke, V. and Richard, M. (1963). Monte carlo methods and the pert problem. Operations
Research, 11(5):839–860.

Walter J. Gutjahr, Christine Strauss, M. T. (2000). Crashing of stochastic processes by
sampling and optimisation. Business Process Management Journal, 6(1):65 – 83.

2238


