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ABSTRACT 

Given a fixed set of points in a 3D space with Euclidean metric, the Tridimensional Euclidean Steiner 

Tree Problem consists of finding a minimum length tree that spans all these points using, if necessary, 

extra points (Steiner points). The finding of such solution is a NP-hard problem. This paper presents a 

hybrid metaheuristic based on GRASP and path relinking to the problem considered. Finally,  

computational experiments compares the performance of the proposed heuristic with previous works in 

the literature. 
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1. Introduction 

The Steiner tree problem has been studied for a long time (Courant e Robbins, 1941), on its 

various aspects, such as: Steiner tree in graphs, rectilinear Steiner tree, Euclidean Steiner tree in 

plane (R
2
) and more recently Euclidean Steiner tree in R

N
 among others. 

This great interest in the Steiner tree problem is due to the fact that it has several practical and 

theoretical problems can be modeled as a Steiner tree problem. At present, a greater emphasis has 

been given to methodologies that efficiently search for solutions to the Euclidean Steiner Tree 

Problem (ESTP) in R
N
, more specifically when N = 3 (tridimensional case) for applications, for 

example, in biochemistry (Smith and Toppur, 1996), phylogenetic inference (Montenegro et al., 

2003) and design of networks in mines etc) (Alford et al., 2006). However, actually very few 

heuristics that can produce reasonable solutions are known and there is only two exact method 

applied just to tiny size instances (Smith, 1992) and (Fampa and Anstreicher, 2008).  

This necessity for more efficient methods to ESTP in R
N 

 (N dimensions considered) is the main 

motivations of this work, namely to provide a hybrid metaheuristic based on GRASP and path 

relinking to solve this problem. With the application of proposed hybrid metaheuristic, high quality 

near-optimal solutions are found, while seeking to maintain a satisfactory computational time (good 

performance). 

This work, besides hybrid metaheuristic, also presented the results obtained from computational 

experiments. Following, are presented comparisons with the best techniques of literature.  

This paper is organized as follows. Next section introduces ESTP formally and mentions the 

principal exact method in the literature known as Smith algorithm. Section 3 presents hybrid 

GRASP metaheuristic proposed, with its constructive and local search phases, well as path relinking 

method. Section 4 presents the experiments carried out as well as the computational results obtained, 

together with comparisons with other existing heuristics in the literature. Conclusions and future 

work are presented in Section 5.    

1881



XLVSBPO
Setembro de 2013

Natal/RN

16 a 19Simpósio Brasileiro de Pesquisa Operacional
A Pesquisa Operacional na busca de eficiência nos
serviços públicos e/ou privados

  

 

2. Definition of Euclidean Steiner Tree Problem 

The Euclidean Steiner Tree Problem (ESTP) is as follows: Given P points (also called 

obligatory) in R
N
 with Euclidean metric, find a minimum spanning tree (MST) that connect the given 

points, using, if necessary, extra points known as Steiner points, (see Figure 1). The remainder of 

this section presents the main characteristics of ESTP. 

 
Figure 1: Steiner Tree with four obligatory points (P=4) and two Steiner points (S1 and S2). 

Suppose given P points x
i
  R

N
, i = 1, 2, 3, ..., P in N dimensional space. Then, a solution of 

ESTP, called Steiner Minimum Tree (SMT) must present the following properties (Smith, 1992):  

 The maximum number of Steiner points (K) is P-2; 

 a Steiner point must have valence (or degree) equal to 3; 

 edges emanating from a Steiner point lie in the same plane and have mutual angles of 120°. 

If a tree (minimum or not) satisfies such properties, then we call it a Steiner tree. We call a 

Steiner topology the graph that represents a Steiner tree. The total number of different topologies 

with K Steiner points is 
)(k!2

2)!K(P
C

K2KP,


 . When K=P-2, we have a Full Steiner Tree (FST) 

and the number of different topologies is f(P) = 
)!2(2

)!42(
2 


 P

P
P

. Considering, for example, P=10, the 

total number of full topologies is f(10) = 2.027.025. This is the number of full topologies to be 

minimized by a brute force method. In Garey at al. (1977) and Garey and Johnson (1979), the ESTP 

is shown to be NP-Hard, fundamentally due to this combinatorial explosion, and is not possible to 

find an exact polynomial time algorithm for this problem.   

In the next subsection, more details will be given about full topologies to represent Euclidean 

Steiner trees and their importance in this work. 

2.1. Describing Full Topologies 

There exists an 1-1 (one-to-one) correspondence between full Steiner topology with P ≥ 3 given 

points and (P – 3)-vectors, here denoted as a vectors. In each vector a, its i
th
 component (position) ai 

corresponds to an integer value in the range 1 ≤ ai ≤ 2i +1. One Steiner tree can be generated 

constructively given a (P – 3)-vector a as follows. Starting  with an initial null vector ( ), 

corresponding to a full Steiner topology with three given points, 1, 2 and 3, connected through 

respective edges 1, 2 and 3 and one Steiner point numbered as P+1. This is clear because it is 

necessary at least three points to have a Steiner tree. After this step, all entries of the topology vector 

are considered, one at a time, where the i
th
 entry of topology vector is related to the insertion of 

P+i+1 Steiner point over the edge ai and its connection with the given point i+3. This involves the 

addition of two new edges: the edge 2i+2, connecting the new Steiner point (P+i+1) to the new given 
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point (i+3), and the 2i+3 edge, connecting this Steiner point (P+i+1) to the extreme (vertex) of ai 

edge that have the larger number. 

Figure 2 presents an example of construction of a full Steiner tree, using the topology vector a = 

(2, 4) and considering P = 5 and N = 3. 

On the construction of the full Steiner tree corresponding to the topology vector a = (2, 4), the 

initial null vector ( ) is considered first, using the first three given points 1, 2 and 3 and the Steiner 

point, numbered as P+1. Next, considering the first element (i=1) of the topology vector, whose 

value is 2 (a1=2), the Steiner point P+2 must be inserted in the edge 2 to connect the given point 4, 

generating two new edges numbered 4 and 5, as can be seen in Figure 2b. The second element (i=2) 

of the topology vector, whose value is 4 (a2=4), indicates the edge where the Steiner point P+3 must 

be inserted to connect the given point 5, generating two new edges numbered 6 and 7, as can be seen 

in Figure 2c. 

          

     (a)                   (b)                   (c) 

Figure 2: The initial null vector ( ) corresponds to the topology presented in (a); the topology with 

connection of given point 4 on edge 2 corresponding to the vector (2) is presented in (b), and the 

topology with the given point 5 inserted on edge 4 is presented in (c). 

All trees of non-full topologies could be considered to be full Steiner topologies, with one or 

more Steiner point coinciding with given points. This interpretation, together with the use of 

adequate methods of minimization, makes it sufficient to focus on full topologies when searching 

for solution to TESTP. One efficient minimization method is proposed by Smith (1992) and will be 

approached in Section 2.2. Another existing exact method is the one proposed by Fampa and 

Anstreicher (2008), named Smith+, which is a improved version of Smith algorithm (1992). 

However, Fampa and Anstreicher (2008) method was not considered in this work , because both 

source-code as used test instances are not available and given the same has been applied only to 

small instances (P ≤ 18). 

2.2. Smith Algorithm 

Smith (1992) proposes an enumerative method to find an exact solution to the ESTP in 

dimension n ≥ 3, consisting basically of enumeration of all possible solutions to the problem and 

subsequent minimization, selecting the best solution among these. Enumeration of solutions is done 

through the use of topology vectors, each one representing a possible full topology, that are applied 

in a context of a branch-and-bound algorithm.  

An important consideration about Smith algorithm is that it only searches full topologies (FST). 

The reason for this simplification is that the optimization method used by Smith allows considering 

other topologies as degenerations of complete topologies, where some Steiner points coincide with 

the given points. Despite this, the number of FST is still exponential in n. 

Smith affirms that his algorithm is only capable of solving problems with at most twelve points, 
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Phase Constructive 

1    Initiate S = Ø ; //topologic vector  

2    Initialize i = 1; 

3    Define T = all topologies of size i; 

4    While (i < P - 3) Do 

5       Calculate V
-
 = min{V(t) : t  T}; //V(t) is the cost of the tree of topology t 

5       Calculate V
+
 = max{V(t) : t  T}; //V(t) is the cost of the tree of topology t 

6       Define RCL = { t  T : V(t) ≤ V
-
 +  x (V

+
 - V

-
)}; 

7       Select t  RCL at random; 

8       i = i + 1;  

9       Define T = all topologies of size i descendents of t; 

10  End While;  

11  S = {t  T : min(V(t) : t  T)); //select the minimum size topology in T 

12  Return S; 

 

but in any dimension. This fact limits the practical application of the Smith algorithm. Despite this, 

Smith’s (1992) algorithm is important since it opens up the possibility of use of its minimization step 

to find the optimal position of Steiner points for a given topology vector. 

3. Hybrid Metaheuristic Method to Solve ESTP 

This paper proposes a hybrid metaheuristic that mix together GRASP and path relinking to solve 

ESET. GRASP is a semi-greedy metaheuristic proposed by Resende and Feo (1995). This 

metaheuristic has two phases, first consist of a semi-greedy constructive phase and second is a local 

search. Here, an intensification strategy known as Path Relinking (PR) proposed by Glover (1996) 

was incorporated (hibridized) to GRASP, being justified by the success obtained by improving 

solutions found by GRASP (Laguna e Marti, 1999; Festa e Resende, 2008). This way, the following 

subsection describes constructive, local search and path relinking phases of the proposed hybrid 

metaheuristic, here called GRASP-PR. 

3.1. Constructive Phase 

In constructive phase, at each step, a given pont (fixed) is considered and a new Steiner point is 

inserted to the tree and its position, as the other Steiner point already considered, are optimize 

according to Smith criteria (1992), as cited in 2.2 section.  Constructive steps are the following. 

Step 1: Initial Step 

 Generate all topologies of size 1 and calculate their respective lengths. 

 Insert them in the Restricted Candidate List (RCL). 

 Choose a topology in accordance with the RCL criteria. 

Step 2: Repeat until all descendent topology vectors have size P - 3 

 Generate all descendent topologies from one chosen in the previous step and calculate their 

respective lengths. 

 Insert all generated topologies in RCL. 

 According with RCL criteria choose one topology. 

The constructive algorithm as cited is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Constructive algorithm to ESET. 
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Phase Local_Search (S) // S is the initial topologic vector 

1    stop = value; //number of iterations with no improvement 

2    cont = 0; initial topologic vector S;  = val(S); 

3    Repeat 

4        For z=1 to numneighbor (can be P - 3) Do  

5           S’ = S; 

6           i = rand(P-3); //sort position from 1 to P-3 

7           S’[i] = rand(2*i+1) //randomly choose a new value 1  S’[i]  2*i+1 different 

                            //from all others S’[i] (S´[i]  S’ = )   

8           ’ = val(S’);       

9           cont = cont+1; 

10          If (’ < ) Then 

11            S = S’;    = ’;   cont = 0; 

12          End If 

13      End For 

14      cont = cont + 1; 

15  Until (cont >= stopBL);  

16  Return S; 

 

From described algorithm in Figure 3, lines 1 to 3 corresponds to Step 1 and lines from 4 to 10, 

corresponds to Step 2. An example of constructive phase with P = 6 and  = 1 is as follows.. 

Example to P = 6 and  = 1 

 Step 1 generated the topologies (vectors) A(1), A(2) and A(3) and suppose that the chosen was 

A(2). 

 In the first execution of step 2, all descendent topologies of the one chosen in the previous step 

(A(2)) are generated. They are: A(2,1), A(2,2), A(2,3), A(2,4) and A(2,5). Suppose that, in this 

step, the chosen is A(2,3). 

 In the second execution of step 2, all descendent topologies of the chosen in the previous step 

(A(2,3)) are generated These topologies are: A(2,3,1), A(2,3,2), A(2,3,3), A(2,3,4), A(2,3,5), 

A(2,3,6) and A(2,3,7). Suppose that the chosen in this step is A(2,3,4). The last full topology 

chosen in step 2 (in this case A(2,3,4)), will be the initial solution for the local search phase. 

3.2. Local Search Phase 

Local search phase starts with a solution generated on constructive phase. Local search 

algorithm is presented in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Local Search algorithm to the ESTP. 

 

The local search phase uses the initial solution from the constructive phase and explores the 

neighborhood around this solution being this a topology descriptor (P – 3) – vector A, as cited in the 

constructive phase. The proposed method uses a simple neighborhood, where, given a topology 

vector A, its neighbors will be the topology vectors A’ obtained by the change of only one of the P – 

3 entries of A. For the proposed local search, the following consideration must to be taken: 

 if an improvement is found, the current solution is updated and again a neighborhood around the 

new solution is searched.  
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 the process is repeated for a fixed number of times (stop variable), specified by the user. 

 The number of neighbors (numneighbor) to be searched for a given topology is defined 

(empirically) as: 

 If P ≤ 100 then numneighbor=P*0.5; else numneighbor=P*0.2; 

 This estimate is done in order that it is not necessary to search the whole neighborhood 

of a given topology, which would make the method too slow. 

3.3. Path Relinking to ESTP 

This section presents path relinking implementation to ESET. The algorithm starts from a T0 

solution and step-by-step transforms it in another solution Td, where each solution is a topologic 

vector. In this path is possible to find a better solution than T0 and Td. Solution T0, from where the 

method starts, is called base solution and Td, the solution where is pretended to arrive, is called guide 

solution. 

If T0 and Td are two solutions (topologic vectors) with d edges to insert different Steiner points, 

a movement from T0 to Td is a substitution of a Steiner point insertion edge in T0 by a Steiner point 

insertion edge in Td. In other words, taken a base solution T0 and a guide solution T2, there are two 

different edges to insert Steiner points (d = 2) between this two solutions. This way, there are two 

possibilities to intermediary solution T1. 

Path relinking method works in the following way: starting from T0, a movement to Td is 

generated and we have a intermediary solution T1. Next, one more movement is generated, from T1 

to Td, and so on until we have a solution Td-1, after d-1 movements made. 

Figure 5 presents how this method works. As T0 is the topologic vector formed by insertion 

edges of Steiner points {2, 4} and the guide solution Td is the topologic vector formed by insertion 

edges of Steiner points {1, 5}, we have two differences (d = 2) between this two solutions.  

  

 

Figure 5: Example of how path relinking works to ESET. 
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This way, there are two candidates from T0 to generate T1 (this are T
1

0
={1, 4} e T

2

0
={2, 5}). Suppose 

the best option is change the insertion edge of Steiner points from 2 to 1. Thus, is generated the 

intermediate solution T1 {1, 4}. The next movement, there is only one possibility, change the 

insertion edge of Steiner point 4 by 5. With this change, the intermediate solution T2 is generated. As 

it is the same than Td, the method stops. 

3.4. Hybridizing GRASP with Path Relinking 

Among several alternatives to make GRASP performance better, one that is having very big 

success is hybridizing it with path relinking method, that have as goal improve the quality of 

solutions obtained by GRASP (Resende e Ribeiro, 2005). Accordingly to Aiex et al. (Aiex and 

Resende, 2005) hybridizing GRASP with path relinking had taken to significant improvements on 

the quality of solutions obtained when compared to the both methods working alone.  

Figure 6 presents the proposed algorithm (called GRASP-PR).  

 

Figure 6: Algoritmo GRASP com path-relinking. 

In GRASP-PR, user defines the number of executions (MaxIter) and the size of elite set 
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(MaxElite). After this, is executed the constructive phase (line 3). After, is executed the local search 

phase (line 4). Using orientations provided in Resende e Ribeiro (2005), path relinking had the 

following features: 

 Start the procedure considering as base solution one elite solution selected at random and the 

guide solution, the solution S’ provided by local search. 

 Size of elite set (MaxElite) is 5. 

 Path relinking methos is used (line 20) always that the solution S’ (provided by local search) is 

p% worse that the best solution of elite set  (ConjElite). Here, p=iter, where iter is the number of 

iterations with no update in the elite set. Thus, the larger the number of iterations without updating 

the elite set (iter), greater the probability of performing path relinking. 

 Apply path relinking to the solutions S’ and solution CE  of elite set that maximize d (the most 

different), being base solution, the best between both. 

Given that path relinking method is computational expensive to be applied to each GRASP 

iteration, is important to consider ways to avoid unnecessary effort. The way used in this work was 

the addition of memory. In this case, all pairs of solutions used as base and guide are stored in a hash 

table. Thus, a new pair of solutions (base and guide) will only be submited to path relinking if this is 

not already in hash table. Hash technique used in this work was with hash  function by 

multiplication method and collision treatment by chaining. Another artifice used was to use a 

filtering strategy. In this case, a solution is only used as a base solution in the case that is  maximum 

at λ% worse than the incumbent solution (best solution found). In this work, considered λ=1%, 

based on results obtained by Martins et al. (2000). 

4. Preliminary Results Obtained to ESET 

This section will be presented preliminary results of hybrid metaheuristic GRASP-PR proposed 

done over three set of 15 instances each with with P equal 50, 100 and 250 respectively in R
3
 and 

generated as in Montenegro et al. (2001). 

Here, the computational results obtained by GRASP-PR are compared to the presented in Rocha 

et al., (2007). In Rocha et al., (2007) are performed computational tests with several heuristics and 

and exact method. The heuristic methods are: Soap Film (Chapeau-Blondeau, Janez e Ferrier, 1997), 

Genetic Algorithms (GA) (Montenegro e Maculan, 2000), Microcanonical Otimization (µO) 

(Montenegro et al., 2001) and GRASP (Rocha et al., 2007) called GRASP-S; more the exact method 

proposed in Smith (1992).  Among all, GRASP-S stood out, obtaining best performance, well 

relative to the quality of solutions found as computational time. This way, is the literature's 

technique considered to comparison. To evaluate the quality of solutions found by the heuristic 

methods, was used a reference measure known as Steiner Ratio (ρ), defined as ρ = LSMT/LMST, where 

LSMT is the length of Steiner Minimum Tree (exact or heuristic) and LMST is the length of Minimum 

Spanning Tree, which can be obtained in polynomial time (Prim, 1957). A heuristic solution is better 

the lower its ρ value. 

The hybrid metaheuristic GRASP-PR proposed in this work was implemented using C 

programming language and compiled with gcc 3.3.2 using the -O3 compiler option. All tests were 

done on a machine with the following configuration:  Pentium Core Duo de 1,86 Ghz (code name 

yonah and 2 Mb of L2 cache), 2 Gb of RAM and operational system Linux Ubuntu 11.10. 

GRASP-PR was performed at the same machine and with the same parameters of GRASP-S. Path 

relinking parameters as cited in section 3.4 have their values presented in Table 1.  
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Table 1: Parameter values to GRASP-PR. 

Parameter α MaxIter stopBL MaxElite p λ 

Value [0.1; 0.3] 100 10 5 MaxIter 1% 

 

Computational results of GRASP-PR are presented in Table 2. Analyzing presented result in 

Table 2, GRASP-PR had a little increase in computational time, but obtained a greater number of 

better solutions found (NBSF) to instances with P equal 100 and 250, obtaining 3 better solutions in 

15 to the first case and 5 better solutions in 15 to the second case than GRASP-S. To P=50 GRASP-S 

and GRASP-PR obtained the same solutions. In this two set (P=100 and P=250), mean reduction of 

obtained Steiner tree were approximately of 0,98% and 0,63% respectively. 

Considering execute GRASP-PR having as target solutions the ones provided by GRASP-S, 

Figures 7, 8 and 9 illustrates the number of instances that each algorithm has reached the target per 

unit time for each set of instances (P = 50, P = 100 and P = 250). 

From figures 7, 8 and 9 shows the impact of using path relinking procedure on the efficiency of 

GRASP heuristic, because it is found that the number of targets encountered with GRASP-PR is 

always greater at any instant of time considered that afforded by the GRASP-S in all sets of 

instances. An interesting detail to note is that the GRASP-PR hybrid metaheuristic can always find 

50% or more of the targets within 10 seconds of running on three sets of instances. For the set of 

specified targets, the average time of the GRASP-PR for all three instances was 40.66 seconds vs. 

51.33 seconds GRASP-S. 

Table 2: Performance of GRASP-S and of GRASP-PR to the three set higher dimensionality 

instances. 

Method 
 P 

50 100 250 

GRASP-S 

Mean ρ 0,940796 0,948964 0,965472 

Standard Deviation 0,021645 0,022035 0,029665 

Mean Time 21,374 41,503 120,581 

NBSF 0 0 0 

GRASP-PR 

Mean ρ 0,940796 0,939641 0,959331 

Standard Deviation 0,021645 0,021885 0,024466 

Mean Time 23,593 45,834 130,458 

NBSF 0 3 5 
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Figure 7: Number of targets found by GRASP-S and GRASP-PR to the set of instances P=50. 

     

Figure 8: Number of targets found by GRASP-S and GRASP-PR to the set of instances P =100. 

 

Figure 9: Number of targets found by GRASP-S and GRASP-PR to the set of instances P =250. 
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5. Conclusion and Future Works 

This work presented an approach based on heuristic GRASP with reconnection paths to the 

Euclidean Steiner Tree Problem (ESTP) as a hybrid metaheuristic. 

Computational experiments were also carried out and comparisons with the best technical 

literature for the size of the problems addressed, where tests have shown that the proposed 

GRASP-PR is very efficient for obtaining good solutions. The computational tests indicate that 

hybridization of GRASP heuristic with path relinking (GRASP-S more path relinking), here called 

GRASP-PR, provides a significant improvement in the performance. In this case, GRASP-PR 

obtained in various situations, better solutions than GRASP-S. Taking into account the achievement 

of targeted solutions, GRASP-PR also showed better performance with respect to execution time. 

This supports the concept that the hybridization process, when done well, it provides an 

improvement in the overall performance of the developed hybrid method, being superior to each 

party individually.  

The computational results demonstrate the robustness and efficiency of the proposed hybrid 

metaheuristic, for finding the optimal solution for each problem set a greater number of times and to 

a lesser computational time than the competing techniques. 

Experiments performed with GRASP-PR heuristic proposal for ESTP are very promising. 

However, further studies and new developments can be made in order to seek even greater efficiency 

for GRASP. Main suggestions have been: 

• Perform computational tests with instances with higher number of data points (P). 

• Implement this hybrid metaheuristic in parallel in order to increase the performance in terms of 

reduction in execution time of the method. 

• make use of other techniques in the hybridization process and then evaluate the impact of use 

them on the performance of the proposed approach. 
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