�PRIVATE ��

Herr Manfred Kersken	20 June 1996

Institut fur Sicherheitstechnologie Gmbh (IST)

Forschungsgelande

Postfach 13 13

8046 Garching b. Munchen

GERMANY

CC: Dave Curtis,Rolls-Royce and Associates Ltd., Chairman WGA7

Subject: IEC/TC45/SC45A/WGA3 - First Supplement to IEC Publication 880, Revision 7

Please find attached a hard copy of Revision 7 of the section on "Software Tools" which incorporates

comments from the last meeting in Stockholm and additional comments received from France, and a disk with the electronic image in both Word Perfect and DOS format.

I am also enclosing a copy of an Ontario Hydro/AECL Guideline for Categorization of Software that I have received internal approval to release to IEC TC45/SC45A WGA3 and WGA7 for the purposes of input to the new standards work item on software categorization. This document can be distributed to WGA3 and WGA7 members with a note that this guideline is in trial use in Ontario Hydro and AECL. I will send another copy to Dave Curtis directly.

I also enclose two copies of the latest IEEE Software Engineering Standards Committee Program Plan for use in the new work by Nguyen Thuy. Please send him one copy with Evelyne Leret if this is convenient.

Yours Sincerely,

J. Harauz

Senior Design Specialist - Control Computers

Software Engineering Standards & Methods

Ontario Hydro H12 D27

700 University Ave

Toronto, Ontario

Canada M5G 1X6

Tel: 416-592-7235

FAX: 416-592-8802

e-mail: John.Harauz@hydro.on.ca

�
4.3		Software tools for the development of software important to safety

�
4.3.1		Introduction

This chapter of the first supplement to IEC 880 expands on the existing IEC 880 requirements for software tools used in the development of software for computers in safety and safety-related systems of nuclear power plants.

This chapter presents general considerations for software tools, followed by general requirements for all tools covering their evaluation, selection, qualification, and use. All requirements apply to tools used for Category A systems, except those requirements clearly identified as applying only to Category B systems. See IEC 1226 for more detailed requirements for classification.

Additional supporting guidance, to be used as required, is provided in Informative Annexes E, F, G, H and I.

4.3.2		IEC 880 Requirements for Software Tools

The IEC 880 requirements and recommendations that specifically apply to the use and qualification of software tools are listed in Annex D of this document.

4.3.3		General Considerations

4.3.3.1	Use of Software Tools

The use of appropriate software tools can increase the integrity of the software development process, and hence software product reliability, by reducing the risk of introducing errors in the process. The use of tools can also have economic benefits as the time and human effort required to produce software may be reduced. Tools can be used to automatically check for adherence to rules of construction and standards, to generate proper records and consistent documentation in standard formats, and to support change control. Tools can also reduce the testing effort and maintain automatic logs.

Tools are most powerful when they are defined to work cooperatively with each other. Care should be taken not to depend on tools to undertake tasks beyond their capability, e.g., they cannot substitute for humans when judgement is involved. For some cases, tool support is more appropriate than complete automation of the process. When selecting a tool, the benefits and risk of using a tool should be balanced against the benefits and risk of not using a tool. The important principle is to choose tools that limit the opportunity for introducing errors.

Tools within the scope of this supplement include those used to support the capture of requirements and those used to support the transformation of requirements into the final system code and data (there may be many intermediate steps). The scope also includes those tools used to directly support the performance of verification and validation and testing, tools for the preparation and control of application data, and tools for the management and control of the processes and products involved.

Off-line tools, used to calculate important variables used during the design and analysis of equipment important to safety, are considered out of scope to IEC 880 and this supplement. Also out of scope are word processors, project management tools, and other office/support administration tools to support tasks not directly concerned with software development.

4.3.3.2	Tool Integrity and Qualification

The tools used in the development of software in systems important to safety in Nuclear Power Plants shall be qualified to a level which varies in accordance with the system category for which the tool is being used, the integrity requirements on the tool, and the class of the tool.

Tools must have sufficient integrity to ensure that they do not jeopardize the integrity of the end product. For example, a tool can adversely affect the development of safety related software by introducing errors, by producing a corrupted output, or by failing to detect an error that is already present. The integrity requirements of a tool depend on:

	1. The consequences of an error in the tool,

	2. The probability that an error introduced by the tool will cause or lead to a safety significant error in the software being developed, and

	3. What other tools or processes mitigate the consequences of an error in the tool, including the alternatives to using the tool.

Principles of defence in depth and diversity should be taken into account to reduce the integrity requirements for tools.

The level of qualification required for tools also depends on the class or type of tool and whether the output of the tool can be fully verified or validated. Classes of tools by other than life cycle orientation, i.e., the type of task performed by a tool, are:

	(a) Transformation tools such as code generators and compilers, that transform a text or a diagram at one level of abstraction into another, usually lower, level of abstraction.

	(b) Verification and validation tools such as static code analyzers, test coverage monitors, theorem proving assistants, and simulators.

	(c) Service tools used to produce, modify, display and output the software engineering objects of design and assessment such as graphic editors, text editors, text formatters, communication drivers, print spoolers, window management software.

	(d) Infrastructure tools such as development operating systems and public tools interfaces.

	(e) Configuration control tools such as version control tools, "make-file" tools, shell scripts.

4.3.4		General Requirements for Tools

General requirements for tools are presented by categories as follow:

	(a) Software Engineering Environment,

	(b) Tool Qualification,

	(c) Tool Configuration Control,

	(d) Translators/compilers,

	(e) Data Preparation.

4.3.4.1	Software Engineering Environment

(1)	Tools should be used to support all aspects of the whole software life cycle where benefits result through their use and where tools are available. Analysis of the software engineering environment and development processes should be performed to determine the strategy for providing tool support, and documented. If tools are not available, the development of a new tool may need to be considered.

	Examples of tool support are:

	(a) application of formal methods (see Annex F for further guidance);

	(b) testing (see Annex I for further guidance);

	(c) version and configuration control;

	(d) tools operating on the language or a subset of the language (see Section 4.3.4.4);

	(e) preparation, verification and validation, and management of application data (see Section 4.3.4.5);

	

(2)	Criteria for the selection and evaluation of tools for the software engineering environment should be developed and prioritized to allow trade-offs prior to use.

	Note: Annex E recommends a set of selection and evaluation acceptance criteria for appropriate high quality tools.

(3)	The tool support for the software engineering environment shall be analyzed and documented to address:

	(a) how each process is, or is not, supported by tools;

	(b) how each tool is to be used within the project (i.e., the class of the tool);

	(c) how the output of each tool is to be verified and/or validated;

	(d) how other tools or processes mitigate the consequences of an error in the tool.

	For Category B systems, this should be performed considering the integrity of the final product.

(4)	The maintenance, upgrade or replacement strategy for tools shall be documented and justified. It shall ensure that tools are available and adequately supported throughout the life of the software. It shall also ensure that moving to a new version of a tool is justified and the new version of the tool is qualified.

4.3.4.2	Tool Qualification

(5)	For Category A systems, tools whose output is not systematically verified (e.g., by test, analysis, or comparison with the output of functionally similar tools) should not be used.

(6)	Tools shall be qualified according to a documented tool qualification strategy which is justified on the basis of analysis of the system category for which the tool is being used, the integrity requirements of the tool, and the class of the tool.

	The integrity requirements of a tool depend on:

	1. The consequences of an error in the tool,

	2. The probability that an error introduced by the tool will directly cause, or induce, a safety significant error in the software being developed, and

	3. What other tools or processes mitigate the consequences of an error in the tool, including the alternatives to using the tool.

	Tool qualification may involve:

	(a) analysis of tool development process;

	(b) analysis of tool operating experience;

	(c) testing or validation of the tool;

	(d) evaluation of the tool over a period of use;

	(e) feedback of experience with tool use.

(7)	Tools shall be developed to the procedure, documentation, and quality assurance requirements of IEC 880 applicable to the system category (see Section 4.5) if all the conditions below are true:

	(a) The tool output can directly inject, or induce, a fault into the final software;

	(b) The tool output is not systematically verified;

	(c) Where alternative development processes and methods do not exist to, or the overall plant or system design does not, mitigate the effects of tool error;

	(d) The tool does not have large amounts of operational experience of similar use.

(8)	Tools shall be validated if all the conditions below are true:

	(a) The tool output can directly inject, or induce, a fault into the final software;

	(b) The tool output is not systematically verified;

	(c) Where alternative development processes and methods do not exist to, or the overall plant or system design does not, mitigate the effects of tool error;

	(d) The tool has large amounts of operational experience of similar use.

4.3.4.3	Tool Configuration Control

(9)	Configuration management shall ensure the complete identification of selected tools (including name, version, variant, and possibly configuration) and the tool parameters used to generate baselined software.

	Note: This is useful not only for the final software consistency. It also helps in assessing the origin of a fault, which may lie in the source code, in the tool, or in the tool parameters.

(10)	Records documenting the error history and limitations of tools shall be maintained throughout the life of the software for tools whose output can directly inject, or induce, a fault into the final software.

	For category B systems, this should be performed considering the integrity of the final product.

4.3.4.4	Translators/Compilers

This section presents requirements specifically related to translators/compilers, and does not present requirements related to code generators. Because of the size and complexity of many compilers, it can be extremely difficult to demonstrate that a compiler works correctly. Even validated compilers have been found to contain serious errors. However, large amounts of experience increase confidence in that the compiler works correctly.

(11)	Languages and compilers should be selected on the basis of guidance criteria provided in Annex G and other criteria relevant to translators/compilers in this chapter. These criteria complement the requirements stated in IEC 880 Appendix D.

(12)	Compiler optimizer behaviour shall be analyzed to ensure that defensive programming and error checking/handling code introduced by the programmer or selected of the compiler is not removed without warning.

(13)	The use of compiler optimization should be avoided if it produces object code that is excessively difficult to understand, debug, test and validate.

	Note: Code optimization can be used to meet performance requirements due to constraints in hardware speed and storage limits. In exceptional cases, the alternative use of assembly code can be considered in addition to changing the hardware platform.

(14)	Tests, verification and/or validation shall be performed on the final on-line software.

(15)	Where optimization is used, tests, verification and/or validation shall be performed on the optimized code.

(16)	Run-time libraries shall be considered as sets of pre-existing software components. Those components used shall be evaluated, qualified and used in accordance with the requirements in section 4.4 on "Use of Pre-Existing Software".

(17)	For Category A systems, tests, verification and/or validation shall be carried out to ensure that additional code introduced by the translator which is not directly traceable to source line statements (e.g., error checking code, error and exception handling code, initialization code) is correct.

	For Category B systems, this should be performed considering the integrity of the final product.

4.3.4.5	Data Preparation

Computer-based systems important to safety usually require application data to define signals, addresses and functions when general purpose system/kernel software is used (as recommended by IEC 880 Appendix B2.ab). The data can be extensive and normally consists of information such as:

(a) Signal tag references, signal descriptions, source locations and cable numbers, measurement types, electrical ranges or states, engineering units, alarm state definitions, alarm and trip levels etc;

(b) Signal termination points, data base addresses and pointers, information addresses and pointers, hardware addresses and characteristics, display layouts, display symbol and colour information, display signal content identification, log and internal message formats and details of contents etc;

(c) Protection action codes, alarm priority or logic, outputs for action, identification of logic operations and timers, output states to be adopted at failure etc.

The data may be taken from design drawings, schedules and specifications of plant operations and process instrumentation. It will be translated for loading to target processors, and then used to control the action of the on-line software.

Requirements related to data preparation for on-line use follow.

(18)	The integrity of application data shall correspond to the integrity of the on-line software and the application.

(19)	The production of application data shall be planned to ensure it is prepared and recorded accurately with identified responsibilities, taking into consideration the recommendations in Annex H.1.

(20)	The verification and validation of application data shall be planned to ensure it is prepared and recorded accurately with identified responsibilities, taking into consideration the recommendations in Annex H.2.

(21)	This data should be verified with automatic tools where appropriate, taking into consideration the recommendations in Annex H.3.

�
	Annex D

IEC 880 Requirements and Recommendations for the Use and Qualification of Software Tools

(1)	The use of a formal specification language may be a help to show coherence and completeness of the software functional requirements. Automatic tools may be used for this purpose (see IEC 880, 4.10).

(2)	Languages with a thoroughly tested translator should be used. If no thoroughly tested translator is employed additional verification shall show that the result of the translation is correct (see IEC 880, 5.2.1).

(3)	The language should be completely and unambiguously defined, otherwise the use of the language shall be restricted to completely and unambiguously defined features. This applies in a similar way if there is any doubt about the correct translation of a specific language feature or a particular combination of such features (see IEC 880, 5.2.2).

(4)	Problem oriented languages are strongly preferred to machine oriented ones (see IEC 880, 5.2.3).

(5)	As well as the specific points mentioned in Appendix D, a programming language for safety systems and its translator should not prevent by their design:

		- error limiting constructs

		- translation-time type checking

		- run-time type and array bound check, and parameter checking. (see IEC 880, 5.2.4).

(6)	Automatic testing aids shall be available (see IEC 880, 5.2.5).

(7)	The use of automatic tools is recommended (see IEC 880, 5.2.6).

(8)	Quality Assurance measures shall be established for software tools used for integrated system verification, commensurate with the importance of those tools for verification (see IEC 880, 7.5).

(9)	Hardware and software tools used for computer system validation need no special verification. They should, however, be shown to be suited to their purpose (see IEC 880, 8).

(10)	As far as possible suitably qualified automatic development aids should be used (see IEC 880, B1.b.bi).

(11)	Translator (also interpreter, cross-compiler, emulator), linkage editor and loader should be thoroughly tested prior to use; operation is considered very important (see IEC 880, D1.a).

(12)	Reliability data of sufficient quality about translator, linkage editor and loader should be available (see IEC 880, D1.b).

(13)	In cases where auxiliary system programs are used such as aids, documentation systems and the like, they should be appropriately tested before being employed (see IEC 880, D1.c).

(14)	Automatic testing tools should be used as much as possible in deriving test cases (see IEC 880, E2).

�
	Annex E

	Tool Selection and Qualification Evaluation Acceptance Criteria

Following are general acceptance criteria for the selection and evaluation of appropriate high quality tools prior to use in the development of software for computer-based systems important to safety. The criteria are structured by broad categories of software quality characteristics as defined in ISO/IEC 9126. Important software tool quality characteristics are functionality, reliability, usability, efficiency and maintainability. Other characteristics which may influence the selection of tools and support software are portability, economics (licensing effort, resources required to use tool), and alternatives to tool use.

The following acceptance criteria are not necessarily comprehensive and do not necessarily relate directly to the integrity of the final product. A number of criteria relate directly to benefits which can be gained through tool use, and hence may indirectly relate to final product integrity.

Functionality

(1) Tools should be able to exchange data with other tools as required, i.e. tools may be required to use, process, and deliver information shared by other tools or part of a repository.

(2) Tools should provide a consistent interface to users with that of the remainder of the software engineering environment.

(3) Tools should be suitable for the software engineering methods selected.

(4) Tools should prevent unauthorized use (or misuse) of itself.

Reliability

(5) Tools used to provide diversity, i.e. compilers used for the development of multiple-version dissimilar software systems, should be dissimilar, e.g.:

	(a) each tool was obtained from a different supplier (also, one tool could be developed and the other tool could be purchased off-the-shelf), or

	(b) each tool has different input and/or output languages, or

	(c) each tool has dissimilar requirements and design processes.

(6) Tool history should be available to show evidence of tool soundness and maturity, and that the tool has been applied in a relevant application domain.

(7) Tools should supply means for manual, and possibly automatic, review and verification of their outputs against their inputs.

Note: This may require comments in the generated output, structured output to allow traceability, or the output of intermediate steps taken to produce the final output.

(8) Tools should demonstrate predictable response under normal and abnormal conditions. This requires that the tool have error detection and handling capability.

(9) Tools should have periodic automatic backup capability to save the current state of the process in order to guard against work loss during long sessions of tool use.

Usability

Tools should satisfy "usability" criteria with respect to the context of use including users, equipment, environment, and user's tasks, to maximize user effectiveness and minimize the impact of user errors. Usability of tools can be evaluated using the following criteria:

(10) Information displayed should be clear, well-organized, unambiguous and easy to read.

(11) The tool should demonstrate consistent logic in different environments.

(12) The tool should provide clear, informative feedback on the status of tool operation under normal and abnormal conditions. This should allow the user to reverse the execution of functions that have severe consequences, e.g., erasure or overwriting of data, interruption of lengthy processing operations.

(13) Informative, easy-to-use and relevant guidance and support should be provided, both on-line and in hard-copy document format, to help the user understand and use the tool.

(14) The tool should be easy to install on the target system.

(15) Tool documentation should be adequate for the class of tool to allow verification of tool output, and adequate for the user background to allow ease of learning.

Efficiency

(16) The tool should demonstrate acceptable performance (response time) in the expected environment under normal and abnormal conditions.

(17) Tool data storage requirements, memory requirements and processing requirements should be acceptable within the context of the software and hardware environment under normal and abnormal conditions, and anticipated future needs.

Maintainability

(18) Significant changes in one tool will have minimal impact on other tools.

(19) The tool should be easily modifiable.

Other

(20) Purchased commercial tools should be developed to the requirements of a commercial quality system (i.e., ISO 9001).

�
	Annex F

	Tools to Support the Application of Formal Methods

Tools form an essential requirement in the development of systems using formal methods (see section 4.2 for requirements for formal specification and design methods). Formal methods, which are applied purely manually, are highly error-prone and require the involvement of very well trained humans. Therefore they shall be supported by tools which use mathematical techniques to reveal the structure and internal functional relationships of the software to check for internal consistency, consistency with some prior model, desirable/undesirable properties, etc.

Final demonstration that the code meets its formal specification can be performed by means of a compliance analyzer. Where a proven code generator ensures that the executable code is fully consistent with the formal description, then static and dynamic analyses of the code provide a diverse check on the correctness of that description.

Tools for formal specification and design methods can be classified as constructive and analytical tools.

F.1	Constructive Tools

Constructive tools are used to produce the formal specification, design and code, and may include:

(1)	Text Editor

Because formal methods based on set theory, predicate and propositional calculus, require special mathematical symbols, it is important that a suitable text editor is available capable of both displaying these on a high definition screen and also printing them out legibly.

(2)	Graphical Interface

A suitable graphics capability is required where the formal method involves the use of graphics.

(3)	Automatic Code Generator

Once a formal specification has been proven, then the integrity of the design process can be greatly enhanced by the use of a validated automatic code generator. Such a code generator will transform the specification into executable code and thus reduce the likelihood of introducing errors. Additionally, a safe sub-set of a language may be enforced through the code generator design.

Certified software modules should be used for standard functions.

Automatically generated code should be readable. Comments should support the identification of the associated parts of the specification. The structure of automatically generated code should support automatic verification.

(4)	Proof Obligation Generator

Formal methods based on logical reasoning require a proof obligation generator which automatically registers the proof obligations arising during the design steps.

F.2	Analytical Tools

Analytical tools enable checking of the formal specification, design and code; and may include:

(1)	Syntax Checker

A syntax checker provides information on the program structure, the use of program data, the dependency of output variables on input variables, and the control flow through the program allowing:

	(a) identifying structure defects like multiple starts, multiple ends, unreachable code, redundant code, non-usage of function results;

	(b) identifying module/subroutine hierarchy;

	(c) identifying violation of standards and programming conventions, including checks for unconditional branches into loops;

	(d) identifying data that is read before written, data written before read, data written twice without an intervening read;

	(e) checking information flow against specification;

	(f) assisting the design of a dynamic test plan;

	(g) test data management and possible test data generation.

(2)	Semantic Checker

A semantic checker describes the mathematical relationships between output and input variables for every semantically feasible path through the branch free regions of the program. This allows checking what the program will do under all circumstances and detection of errors such as: unexpected output values affected by input values, incorrect response to unexpected input values, incorrect polarity of functions and operators, etc.

(3)	Formal Proof Generator

Formal proofs of a design require the use of an interactive program which carries out the necessary symbol manipulations under the guidance of a human operator in order to discharge the proof obligations. Such a program is known as a theorem proving assistant (TPA). TPAs are large programs whose correctness cannot be demonstrated, therefore requiring that a diverse means of proof should be employed. This usually means the application of a proof checker whose input is the output of the TPA. The proof checker should be based on a formalized proof theory and it should be verified against this proof theory.

(4)	Animator

Where possible the formal specifications should be animated in such a way that the ultimate user of the system can examine aspects of the specification or design in order to validate (as far as is practicable) the proposed design. The animation should be as representative as possible of the design and may require the use of prototypes to demonstrate the non-functional aspects. This evaluation is done against the user's criteria and the system requirements may be modified in light of this evaluation.

(5)	Compliance Analyzer

A compliance analyzer can demonstrate that the code correctly implements the specification. Such a tool uses pre- and post-conditions plus loop invariable in such a demonstration. The tool confirms systematically that each condition is fulfilled in the code.

�
	Annex G

	Guidance for Evaluating Languages and Compilers

The following criteria are considered basic positive features of languages and compilers, to be used in conjunction with requirements in IEC 880 Appendix D. These criteria should be carefully selected, and then tailored and prioritized to the requirements of the selected design methodology and the application, to allow tradeoffs when they are used for evaluating and selecting compilers and languages.

(a) restricted control structures to promote structured and modular programming.

(b) preclusion of error-prone constructs (IEC 880 D1.l).

(c) the language, or a safe subset, should have a rigorously defined syntax and semantics (IEC 880 D1.d, D1.e and 5.2.2).

(d) a well defined model for mathematical instructions to allow adequate verification of their correct execution.

(e) static checking of data types and function arguments at compile time (IEC 880 D3.i).

(f) on-line exception handling (IEC 880 D2.b).

(g) static determination of all memory locations at compile or load time.

(h) separate module compilation.

(i) provision of output text that is easily amenable to mathematical analysis.

(j) capability to facilitate identification of programming errors (IEC D2.a).

(k) capability of allowing "self documenting" programs.

(l) capability to allow traceability from source to object code.

(m) capability to allow uniform parameter passing between modules.

(n) facility to produce object code and equivalent, understandable assembly code listings.

�
	Annex H

	Requirements for Data Preparation

H.1	Requirements for Production and Preparation of Data for On-line Use

(1)	The tools and processes to mitigate against potential errors during the process of production and preparation of data should be identified.

(2)	The design of the on-line elementary data structures from the application data shall be defined and documented.

(3)	Application data which can be changed during operation by the operator should be identified, with the methods of control of changes.

(4)	Data which can be changed during operation by the operator should be segregated from other application data.

(5)	Changes to application data should not affect the rest of the on-line software.

(6)	The data should be transferred to a storage device (e.g., ROM, WORM, Disk memory) during data identification from the plant design information. After entry to the storage, data checks should be performed on each entry for correct format, characteristics, field length and characters.

H.2	Requirements for Verification and Validation of Data for On-line Use

(7)	The formality of procedures for data verification and validation shall be similar to the formality of procedures for software verification validation, including identification and clearance of errors.

(8)	The data verification and validation plan should describe:

	(a) the verification, including tests, that must be performed on each data set (possibly with respect to other data sets or other elements of the system architecture interacting with this data set).

	(b) traceability between data set specifications and data set verification and tests.

(9)	The data identified and data to be loaded to the on-line software should be checked automatically where appropriate for internal consistency.

(10)	The data to be loaded to the on-line software should be in a form which can be printed and verified, or a tool shall be used to take that data and restore it to an intelligible form for verification.

(11)	A facility should be provided to allow verification of all loaded configuration data, and to assist validation on site.

H.3	Requirements for Management of Data

(12)	Consistency between devices and plant items, and the on-line data should be confirmed by automatic tools where appropriate.

(13)	Where data defines the interface between two systems, then the data provided for each system shall be derived from the same issue of source databases and documents. The data should be entirely derived by automatic methods from the station design data base where appropriate. Modifications made to the data for either system shall be verified.

	�
	Annex I

	Guidance for Automation of Testing

Automation increases the amount of testing which can be performed in a given period. This can be achieved by meeting the following criteria:

(1)	Validation tools that generate test data, transport or transform test data and test results, and evaluate test results should be able to record a complete test log. This is applicable to module tests as well as to plant simulators.

(2)	Appropriate tools should be used to test or simulate the behaviour of the code on the target hardware. Consistency checks between target binary code and generated binary code shall be available.

(3)	The use of the following additional tools should be considered:

	(a) test generators, test coverage analyzers and test drivers.

	(b) on-line diagnostic programs with trace, dump inspect and trace facilities

	(c) debuggers with debugging facilities at the source code level.

�

IEC/CASETOOL.R07, Revision 7, 20 June 1996

�

		�PÁGINA * ARÁBICO�7�

